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Preface

This preface introduces the ARM968E-S Technical Reference Manual. It contains the 
following sections: 

• About this manual on page xii 

• Feedback on page xvi. 
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Preface 
About this manual

This manual is the Technical Reference Manual (TRM) for the ARM968E-S processor. 

Product revision status

The rnpn identifier indicates the revision status of the product described in this manual, 
where: 

rn Identifies the major revision of the product. 

pn Identifies the minor revision or modification status of the product. 

Intended audience

This manual is written to help designers, system integrators, and verification engineers 
who are implementing systems around the ARM968E-S processor. 

Using this manual

This manual is organized into the following chapters: 

Chapter 1 Introduction 

Read this chapter for an introduction to the ARM968E-S processor. 

Chapter 2 Programmer’s Model 

Read this chapter for an introduction to the ARM programmer’s model. 

Chapter 3 Memory Map 

Read this chapter for a description of the ARM968E-S fixed memory 
map implementation. 

Chapter 4 System Control Coprocessor 

Read this chapter for a description of the ARM968E-S CP15 control and 
status registers. 

Chapter 5 Bus Interface Unit 

Read this chapter for a description of the operation of the Bus Interface 
Unit (BIU) and the AHB write buffer. 

Chapter 6 Tightly-Coupled Memory Interface 

Read this chapter for a description of the requirements and operation of 
the tightly-coupled memory. 
xii Copyright © 2004, 2006 ARM Limited. All rights reserved. ARM DDI 0311D



Preface 
Chapter 7 DMA Interface 

Read this chapter for a description of the ARM968E-S Direct Memory 
Access (DMA) interface. 

Chapter 8 Debug Support 

Read this chapter for a description of the debug support for the 
ARM968E-S processor and the EmbeddedICE-RT logic. 

Chapter 9 Embedded Trace Macrocell Interface 

Read this chapter for a description of the ETM interface, including 
descriptions of how to enable the interface. 

Chapter 10 Test Support 

Read this chapter for a description of the test methodology used for the 
ARM968E-S synthesized logic and tightly-coupled memory. 

Chapter 11 DFT Interface 

Read this chapter for a description of the ARM968E-S Design For Test 
(DFT) interface. 

Appendix A Signal Descriptions 

Read this appendix for a description of the ARM968E-S signals. 

Appendix B AC Parameters 

Read this appendix for the definitions of the ARM968E-S processor 
timing parameters. 

Glossary Read the Glossary for definitions of terms used in this manual.

Conventions

This section describes the documentation conventions used in this manual: 

• Typographical 

• Timing diagrams on page xiv 

• Signals on page xv.

Typographical

The typographical conventions are:

italic  Highlights important notes, introduces special terminology, 
denotes internal cross-references, and citations.
ARM DDI 0311D Copyright © 2004, 2006 ARM Limited. All rights reserved. xiii



Preface 
bold  Highlights interface elements, such as menu names. Denotes 
ARM processor signal names. Also used for terms in descriptive 
lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as 
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You 
can enter the underlined text instead of the full command or option 
name.

monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Angle brackets enclose replaceable terms for assembler syntax 
where they appear in code or code fragments. They appear in 
normal font without brackets in running text. For example:

• MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

• The Opcode_2 value selects which register is accessed.

Timing diagrams

The figure named Key to timing diagram conventions explains the symbols used in 
timing diagrams. Variations, when they occur, have clear labels. You must not assume 
any timing information that is not explicit in the diagrams. 

Key to timing diagram conventions

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xiv Copyright © 2004, 2006 ARM Limited. All rights reserved. ARM DDI 0311D



Preface 
Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is 
active-HIGH or active-LOW. Asserted means HIGH for 
active-HIGH signals and LOW for active-LOW signals.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix n Denotes active-LOW signals except in the case of AHB or 
Advanced Peripheral Bus (APB) reset signals.

Prefix P Denotes APB signals.

Suffix n AHB HRESETn and APB PRESETn reset signals.

Further reading

This section lists publications by ARM Limited and by third parties. 

ARM Limited periodically provides updates and corrections to its documentation. See 
http://www.arm.com. for current errata sheets, addenda, and the ARM Limited 
Frequently Asked Questions list. 

ARM publications

This manual contains information that is specific to the ARM968E-S processor. See the 
following documents for other related information:

• ARM Architecture Reference Manual (ARM DDI 0100) 

• ARM9E-S Technical Reference Manual (ARM DDI 0240) 

• AMBA Specification (ARM IHI 0011) 

• ARM968E-S Implementation Guide (ARM DII 0090) 

• AHB Example AMBA System Technical Reference Manual (ARM DDI 0170) 

• ETM9 Technical Reference Manual (ARM DDI 0157) 

• ETM9 Implementation Guide (ARM DII 0001). 

Other publications

This section lists relevant documents published by third parties: 

• IEEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan 
Architecture. 
ARM DDI 0311D Copyright © 2004, 2006 ARM Limited. All rights reserved. xv



Preface 
Feedback

ARM Limited welcomes feedback on the ARM968E-S processor and its 
documentation. 

Feedback on the ARM968E-S processor

If you have any comments or suggestions about this product, contact your supplier 
giving: 

• the product name 

• a concise explanation of your comments. 

Feedback on this manual

If you have any comments on this manual, send email to errata@arm.com giving: 

• the title 

• the number 

• the relevant page number(s) to which your comments apply 

• a concise explanation of your comments. 

ARM Limited also welcomes general suggestions for additions and improvements. 
xvi Copyright © 2004, 2006 ARM Limited. All rights reserved. ARM DDI 0311D



Chapter 1 
Introduction

This chapter introduces the ARM968E-S processor. It contains the following sections: 

• About the ARM968E-S processor on page 1-2 

• TCM access on page 1-5 

• Debug interface configurations on page 1-6. 
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Introduction 
1.1 About the ARM968E-S processor

The synthesizable ARM968E-S processor is a member of the ARM9 Thumb family and 
implements the ARMv5TE architecture. It supports the 32-bit ARM instruction set and 
the 16-bit Thumb instruction set. The ARM968E-S processor is targeted at a wide range 
of embedded applications that require high performance, low system cost, small die 
size, and low power. 

For a description of the ARM and Thumb instruction sets, see the ARM Architecture 
Reference Manual. 

Features of the ARM968E-S processor include: 

• the ARM9E-S integer core 

• Instruction Tightly-Coupled Memory (ITCM) and Data Tightly-Coupled Memory 
(DTCM) interfaces with: 

— configurable to sizes of 0KB and 1KB-4MB in power-of-two increments 

— ITCM and DTCM write buffers. 

• AHB-Lite Direct Memory Access (DMA) interface 

• AHB-Lite Bus Interface Unit (BIU) interface 

• fixed memory map 

• optional ETM interface 

• optional full debug or reduced debug interface 

• scan test support. 

Figure 1-1 on page 1-3 shows the blocks of the ARM968E-S processor and their 
interface signals. 
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Introduction 
Figure 1-1 ARM968E-S processor block diagram

Table 1-1 shows the chapters that describe the blocks in Figure 1-1. 

Table 1-1 Location of block descriptions

Block Location of description

ARM9E-S core ARM9E-S (Rev 1) Technical Reference Manual

ITCM and DTCM interfaces Chapter 6 Tightly-Coupled Memory Interface

BIU AHB-Lite master interface Chapter 5 Bus Interface Unit
ARM DDI 0311D Copyright © 2004, 2006 ARM Limited. All rights reserved. 1-3
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DMA AHB-Lite slave interface Chapter 7 DMA Interface

ETM interface Chapter 9 Embedded Trace Macrocell Interface

Debug interface Chapter 8 Debug Support

Table 1-1 Location of block descriptions (continued)

Block Location of description
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1.2 TCM access

The ARM968E-S processor contains a BIU AHB-Lite master interface and a DMA 
AHB-Lite slave interface.

1.2.1 BIU AHB-Lite master interface

The BIU interface is an interface to AMBA system memory. 

1.2.2 DMA AHB-Lite slave interface

The DMA interface has priority access to the TCM. It enables an external DMA 
controller to move real-time data blocks directly into the TCM for more processing 
without stalling the processor. 

The DMA interface accesses the DTCM through two separate ports, D0TCM and 
D1TCM. The processor and the DMA alternately access the D0TCM and D1TCM ports 
on a word boundary basis. This unique feature enables the DMA port to move external 
data blocks into the DTCM without stalling processor access during the DMA block 
move. Using an even-odd-even-odd word-addressing scheme, the DMA can fill the 
DTCM while the processor interleaves its addresses for simultaneous full-speed access. 
Interleaving processor and DMA access to the DTCM gives a unique system-level 
advantage for real-time data processing applications. 

The DMA interface accesses the ITCM through a single port. This enables the DMA to 
load power-up data directly into the ITCM from a slower memory device such as a flash 
memory. The processor can then boot from the much faster ITCM array. This is also a 
convenient mechanism to download new literal tables directly into the ITCM for 
programmable customer product upgrades. 

The DMA controller cannot access the AHB bus. DMA accesses go only to the TCMs. 
The DMA controller can access the TCMs when the ARM968E-S processor is not in 
RUN mode, even if the processor has not enabled the TCM interfaces. 
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Introduction 
1.3 Debug interface configurations

You can synthesize the ARM968E-S processor with the reduced debug option or the full 
debug option. See the ARM968E-S Implementation Guide for specific synthesis 
instructions for configuring the debug interface. 

1.3.1 Reduced debug interface

The default configuration is a minimum-gate-count implementation that does not 
contain the ETM interface and breakpoint registers normally found on ARM 
processors. The only debug interface in this configuration is through the IEEE-1149 
JTAG port. 

1.3.2 Full debug interface

The second configuration is the higher-gate-count full debug implementation that 
contains the ETM interface and watchpoint and breakpoint registers that are useful in 
software debug environments. 
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Chapter 2 
Programmer’s Model

This chapter describes the ARM968E-S registers and provides information for 
programming the microprocessor. It contains the following sections:

• About the programmer’s model on page 2-2 

• Processor states on page 2-3 

• Processor operating modes on page 2-4 

• Registers on page 2-5 

• Data types on page 2-10 

• Memory formats on page 2-11 

• Exceptions on page 2-13. 
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Programmer’s Model 
2.1 About the programmer’s model

The ARM968E-S processor implements ARMv5TE architecture, which includes the 
32-bit ARM instruction set and the 16-bit Thumb instruction set. For descriptions of 
both the ARM and Thumb instruction sets, see the ARM Architecture Reference 
Manual. 
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Programmer’s Model 
2.2 Processor states

The ARM968E-S processor has two operating states:

ARM state  32-bit, word-aligned ARM instructions are executed in this state. 

Thumb state 16-bit, halfword-aligned Thumb instructions. 

In Thumb state, the Program Counter (PC) uses bit 1 to select between alternate 
halfwords. 

Note
 Transition between ARM and Thumb states does not affect the processor mode or the 
register contents. 

2.2.1 Switching state

You can switch the processor between ARM state and Thumb state by: 

• using the BX and BLX instructions 

• loading the PC with the Load Thumb (LT) bit cleared in the CP15 c1 Control 
Register. 

The processor begins all exception handling in ARM state. If an exception occurs in 
Thumb state, the processor changes to ARM state. The change back to Thumb state 
occurs automatically on return from exception handling. 

2.2.2 Switching state during exception handling

An exception handler can put the processor in Thumb state, but it must return to ARM 
state to enable the exception handler to terminate correctly. 
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Programmer’s Model 
2.3 Processor operating modes

There are seven processor modes of operation: 

User The nonprivileged mode for normal program execution. 

Fast interrupt (FIQ) 

The privileged exception mode for handling fast interrupts. 

Interrupt (IRQ) 

The privileged exception mode for handling regular interrupts. 

Supervisor The privileged mode for operating system functions. 

Abort The privileged exception mode for handling Data Aborts and Prefetch 
Aborts. 

System The privileged user mode for operating system functions. 

Undefined The privileged exception mode for handling Undefined instructions. 

Modes other than User mode are collectively known as privileged modes. Privileged 
modes are used to service exceptions or to access protected resources. 
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2.4 Registers

The ARM968E-S processor has 37 32-bit registers: 

• 16 general-purpose registers 

• 1 Current Program Status Register 

• 15 banked (alternate), mode-specific, general-purpose registers 

• 5 banked (alternate), mode-specific Saved Program Status Registers. 

These registers are not all accessible at the same time. The processor state and processor 
operating mode determine which registers are available to the programmer. 

Figure 2-1 shows the ARM968E-S register set.

Figure 2-1 ARM968E-S register set
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The banked registers are discrete physical registers in the processor that are mapped to 
the available registers depending on the current processor operating mode. The contents 
of banked registers are preserved across operating mode changes. Each banked register 
has a mode identifier to indicate the operating mode. Table 2-1 lists the banked register 
mode identifiers. 

The banked r13 and r14 general-purpose registers can be used as mode-specific stack 
pointers and link registers. For fast interrupt handling, the seven banked 
general-purpose FIQ mode registers, r8_fiq-r14, can be used to reduce the overhead of 
saving registers. 

The r13, r14, and r15 general-purpose registers also have the following special 
functions: 

Stack pointer By convention, r13 is used as the Stack Pointer (SP). 

Link register Register r14 is the subroutine Link Register (LR). 

The LR receives the return address from r15 when a Branch with 
Link (BL or BLX) instruction is executed. 

At all other times, you can treat r14 as a general-purpose register 
The banked r14 registers r14_svc, r14_irq, r14_fiq, r14_abt, and 
r14_und are similarly used to hold the return values when 
exceptions arise, or when BL or BLX instructions are executed 
within interrupt or exception routines. 

Table 2-1 Banked register mode identifiers

Mode Identifier

Usera

a. User mode and System mode use the same 
registers.

_usrb

b. The _usr identifier is omitted unless it is 
necessary to distinguish the User or System 
mode register from another banked register. 

Fast interrupt _fiq

Interrupt _irq

Supervisor _svc

Abort _abt

System _usr

Undefined _und
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Program counter Register r15 is the Program Counter (PC). 

In ARM state, bits [1:0] of r15 are Undefined and must be ignored. 
Bits [31:2] contain the program counter value. 

In Thumb state, bit 0 is Undefined and must be ignored. Bits 
[31:1] contain the program counter value. 

2.4.1 Accessing the register set in Thumb state

In Thumb state, there are fewer instructions than in ARM state to access the Program 
Status Registers and the high registers (r8-r15): 

• In Thumb state, there are no MRS or MSR instructions to move data between the 
CPSR or SPSRs and the general-purpose registers. 

• In Thumb state, only the following instructions can access the high registers: 

— the ADD (4) form of the ADD instruction 

— the CMP (3) form of the CMP instruction 

— the MOV (3) form of the MOV instruction 

— the BLX (2) form of the BLX instruction 

— the BX instruction. 

See the ARM Architecture Reference Manual for more information. 

2.4.2 Program Status Registers

The processor has one Current Program Status Register (CPSR), and five Saved 
Program Status Registers (SPSRs) for exception handlers to use. The Program Status 
Registers: 

• hold information about the most recently performed ALU operation 

• control the enabling and disabling of interrupts 

• set the processor operating mode. 

Figure 2-2 shows the bit fields in the Program Status Registers. 

Figure 2-2 Program Status Registers
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Note
 For compatibility with future ARM processors, do not alter the reserved bits of a 
Program Status Register. Use read-modify-write operations when changing the CPSR. 

Table 2-2 describes the bit fields of the Program Status Registers. 

Table 2-2 Program Status Register encoding

Bit Name Definition

[31] N Overflow flag: 

1 = overflow in last operation 

0 = no overflow.

[30] Z Zero flag: 

1 = result of 0 in last operation 

0 = nonzero result.

[29] C Carry/borrow flag: 

1 = carry or borrow in last operation 

0 = no carry or borrow. 

[28] V Negative or less than flag: 

1 = result negative or less than in last operation 

0 = result positive or greater than. 

[27:8] - Reserved 

[7] I IRQ disable bit: 

1 = IRQ interrupts disabled 

0 = IRQ interrupts enabled. 
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Note
 Writing a value to M[4:0] that is not listed in Table 2-2 on page 2-8 causes the processor 
to enter an unrecoverable state. If this occurs, apply Reset. 

[6] F FIQ disable bit: 

1 = FIQ interrupts disabled 

0 = FIQ interrupts enabled. 

[5] T Thumb state flag: 

1 = processor operating in Thumb state 

0 = processor operating in ARM state. 

[4:0] M Mode field: 

b10000 = User mode 

b10001 = FIQ mode 

b10010 = IRQ mode 

b10011 = Supervisor mode

b10111 = Abort mode 

b11011 = Undefined mode 

b11111 = System mode.

Table 2-2 Program Status Register encoding (continued)

Bit Name Definition
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2.5 Data types

The ARM968E-S processor supports the following data types: 

• 32-bit words 

• 16-bit halfwords 

• 8-bit bytes. 

You must align the data as follows: 

• align words to four-byte boundaries 

• align halfwords to two-byte boundaries 

• align bytes to byte boundaries. 

Note
 Memory systems are expected to support all data types. In particular, the system must 
support subword writes without corrupting neighboring bytes in that word. 
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2.6 Memory formats

The ARM968E-S processor views memory as a linear collection of bytes numbered in 
ascending order from 0. For example: 

• bytes 0-3 hold the first stored word 

• bytes 4-7 hold the second stored word. 

The processor can treat words in memory as being stored in: 

• little-endian format 

• big-endian format. 

Note
 Little-endian is the default memory format for ARM processors. 

In little-endian format, the byte with the lowest address in a word is the least-significant 
byte of the word. The byte with the highest address in a word is the most significant 
byte. The byte at address 0 of the memory system connects to data lines 7-0. 

In big-endian format, the byte with the lowest address in a word is the most significant 
byte of the word. The byte with the highest address in a word is the least significant byte. 
The byte at address 0 of the memory system connects to data lines 31-24. 

Figure 2-3 on page 2-12 shows the difference between little-endian and big-endian 
memory formats. 
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Figure 2-3 Little-endian and big-endian memory formats
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2.7 Exceptions

Exceptions occur whenever the sequential flow of a program has to be temporarily 
changed. For example, the program flow can change to service an interrupt from a 
peripheral device. Before attempting to handle the exception, the processor preserves 
the current processor state so that it can return to the original flow after handling the 
exception. 

If two or more exceptions occur simultaneously, the exceptions are dealt with in the 
fixed order given in Exception priorities on page 2-18.

The following sections describe ARM968E-S exception handling: 

• Entering an exception 

• Exiting an exception on page 2-17. 

2.7.1 Entering an exception

When handling an ARM exception, the processor performs the following sequence of 
operations: 

• preserves the address of the next instruction in the appropriate LR: 

— in ARM state, the processor copies the current PC + 4 or PC + 8 value to 
the LR (see Table 2-3 on page 2-17) 

— in Thumb state, the processor copies the current PC + 2, PC + 4, or PC + 8 
value to the LR (see Table 2-3 on page 2-17). 

Note
 The exception handler does not have to determine the processor state when 

entering an exception. For example, in the case of an SWI in either ARM state or 
Thumb state, the following instruction returns to the next instruction: 

MOVS PC, r14_svc 

• copies the CPSR into the appropriate SPSR 

• forces the CPSR mode bits to a value that depends on the exception type 

• forces the PC to fetch the next instruction from the appropriate exception vector. 

The processor can also set the interrupt disable bits to prevent unmanageable nesting of 
exceptions. 
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Note
 The ARM968E-S processor always enters, handles, and exits exceptions in ARM state. 
If the processor is in Thumb state when an exception occurs, it automatically switches 
to ARM state when it loads the exception vector address into the PC. The exception 
handler might change to Thumb state, but it must return to ARM state to enable the 
exception handler to terminate correctly. 

Reset

Driving the HRESETn signal LOW generates a Reset, and the ARM968E-S processor 
stops executing the current instruction. When HRESETn returns to a HIGH state, the 
ARM968E-S processor: 

• forces the CPSR M[4:0] field to b10011 to enter Supervisor mode 

• clears the CPSR T bit to enter ARM state 

• sets the CPSR F bit to disable FIQ interrupts 

• sets the CPSR I bit to disable IRQ interrupts 

• forces the PC to the Reset vector address. 

Abort

An abort occurs when the memory system cannot complete a data access or an 
instruction prefetch as described in the following sections: 

• Data Abort 

• Prefetch Abort on page 2-15. 

Data Abort

When the memory system signals a Data Abort, the ARM968E-S processor: 

• marks the loaded or stored data as invalid 

• enters the Data Abort exception before any following instructions alter the 
processor state 

• writes the address of the aborted instruction into r14_abt 

• copies the contents of the CPSR into the SPSR_abt 

• forces the CPSR M[4:0] field to b10111 to enter Abort mode 

• clears the CPSR T bit to enter ARM state 

• sets the CPSR I bit to disable IRQ interrupts 

• forces the PC to the Data Abort vector address. 
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Prefetch Abort

When the memory system signals a Prefetch Abort, the ARM968E-S processor: 

• marks the fetched instruction as invalid 

• enters the Prefetch Abort exception when the instruction reaches the Execute 
stage of the pipeline 

• writes the address of the aborted instruction into r14_abt 

• copies the contents of the CPSR into the SPSR_abt 

• forces the CPSR M[4:0] field to b10111 to enter Abort mode 

• clears the CPSR T bit to enter ARM state 

• sets the CPSR I bit to disable IRQ interrupts 

• forces the PC to the Data Abort vector address. 

Fast interrupt request

An FIQ is a fast interrupt caused by a LOW level on the nFIQ input. The nFIQ input 
passes into the processor through a synchronizer. When FIQ interrupts are enabled, the 
processor checks for a LOW level on the output of the FIQ synchronizer at the end of 
each instruction.

When an FIQ interrupt occurs, the ARM968E-S processor: 

• writes the address of the next instruction to be executed plus four into r14_fiq 

• copies the contents of the CPSR into the SPSR_fiq 

• forces the CPSR M[4:0] field to b10001 to enter FIQ mode 

• clears the CPSR T bit to enter ARM state 

• sets the CPSR F bit to disable FIQ interrupts 

• sets the CPSR I bit to disable IRQ interrupts 

• forces the PC to the FIQ vector address. 

FIQs and IRQs are disabled when an FIQ occurs. You can use nested interrupts, but you 
must save any corruptible registers and re-enable FIQ and IRQ interrupts. 

Interrupt request

The IRQ exception is a normal interrupt caused by a LOW level on the nIRQ input. An 
IRQ interrupt has lower priority than an FIQ interrupt. The processor disables IRQ 
interrupts when it enters an FIQ sequence. 

When an FIQ interrupt occurs, the ARM968E-S processor: 

• writes the address of the next instruction to be executed plus four into r14_irq 

• copies the contents of the CPSR into the SPSR_irq 

• forces the CPSR M[4:0] field to b10010 to enter IRQ mode 
ARM DDI 0311D Copyright © 2004, 2006 ARM Limited. All rights reserved. 2-15



Programmer’s Model 
• clears the CPSR T bit to enter ARM state 

• sets the CPSR I bit to disable IRQ interrupts 

• forces the PC to the IRQ vector address. 

The processor disables IRQ interrupts when it enters an IRQ sequence. You can use 
nested interrupts, but you must save any corruptible registers and re-enable IRQ 
interrupts. 

Undefined instruction

When the processor encounters an instruction that neither it nor any coprocessor in the 
system can handle, it takes the Undefined instruction trap. Software can use this 
mechanism to extend the ARM instruction set by emulating Undefined coprocessor 
instructions. 

When an Undefined instruction exception occurs, the ARM968E-S processor: 

• writes the address of the next instruction to be executed into r14_und 

• copies the contents of the CPSR into the SPSR_und 

• forces the CPSR M[4:0] field to b11011 to enter Undefined mode 

• clears the CPSR T bit to enter ARM state 

• sets the CPSR I bit to disable IRQ interrupts 

• forces the PC to the Undefined vector address. 

Software interrupt instruction

You can use the SWI instruction to enter Supervisor mode to request a particular 
supervisor function. The SWI handler reads the opcode to extract the SWI function 
number. 

When an SWI instruction is executed, the ARM968E-S processor: 

• writes the address of the next instruction to be executed into r14_svc 

• copies the contents of the CPSR into the SPSR_svc 

• forces the CPSR M[4:0] field to b10011 to enter Supervisor mode 

• clears the CPSR T bit to enter ARM state 

• sets the CPSR I bit to disable IRQ interrupts 

• forces the PC to the SWI vector address. 
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2.7.2 Exiting an exception

When exception processing is completed, the exception handler must perform the 
following steps: 

1. Move the LR value, minus an offset, to the PC. The offset depends on the type of 
exception, as Table 2-3 shows. 

2. Copy the SPSR back to the CPSR. 

3. Clear the interrupt disable bits that were set when the processor entered the 
exception. 

Note
 Restoring the CPSR from the SPSR automatically restores the I, F, and T bits to the 
values they held immediately before the exception. 

Table 2-3 Exception return points

Exception

Saved LR value

Return instruction Return point
ARM 
state

Thumb 
state

Reset - - - After Reset, r14_svc value is Unpredictable 

Data Abort PC + 8 PC + 8 SUBS PC, R14_abt, #8 Aborted instruction 

SUBS PC, R14_abt, #4 Instruction after aborted instruction 

FIQ PC + 4 PC + 4 SUBS PC, R14_fiq, #4 Interrupted instruction 

IRQ PC + 4 PC + 4 SUBS PC, R14_irq, #4 Interrupted instruction 

Prefetch Abort PC + 4 PC + 4 SUBS PC, R14_abt, #4 Aborted instruction 

Undefined instruction PC + 4 PC + 2 MOVS PC, R14_und Instruction after Undefined instruction 

SWI instruction PC + 4 PC + 2 MOVS PC, R14_svc Instruction after SWI instruction 
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2.7.3 Exception vectors

Table 2-4 lists the exception vector addresses. 

2.7.4 Exception priorities

When multiple exceptions are present, a fixed priority system determines the order in 
which they are handled. Table 2-5 lists the exception priorities. 

Some exceptions cannot occur together: 

• The Undefined instruction and SWI exceptions are mutually exclusive. Each 
corresponds to a particular, non-overlapping, decoding of the current instruction. 

Table 2-4 Exception vectors

Exception Vector address

Reset 0x00000000

Undefined instruction 0x00000004

SWI 0x00000008

Prefetch Abort 0x0000000C

Data Abort 0x00000010

Reserved 0x00000014

IRQ 0x00000018

FIQ 0x0000001C

Table 2-5 Exception priorities

Priority Exception

Highest Reset

Data Abort

FIQ

IRQ

Prefetch Abort

Lowest Undefined instruction and SWI
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• When FIQs are enabled, and a Data Abort occurs at the same time as an FIQ, the 
processor enters the Data Abort handler, and proceeds immediately to the FIQ 
vector. 

A normal return from the FIQ causes the Data Abort handler to resume execution.

Data Aborts must have higher priority than FIQs to ensure that the transfer error 
does not escape detection. You must add the time for this exception entry to the 
worst-case FIQ latency calculations in a system that uses aborts to support virtual 
memory. 
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Memory Map

This chapter describes the ARM968E-S processor fixed memory map implementation. 
It contains the following sections: 

• About the ARM968E-S memory map on page 3-2 

• Tightly-coupled memory address space on page 3-3 

• Bufferable write address space on page 3-4. 
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3.1 About the ARM968E-S memory map

The fixed-size Instruction Tightly Coupled Memory (ITCM) and Data Tightly Coupled 
Memory (DTCM) enable high-speed operation without incurring the performance and 
power penalties of accessing the system bus. Write buffers decouple the processor from 
wait states incurred when accessing the AHB bus and the TCMs. 

The fixed memory map provides simple control over the TCM and AHB write buffers. 
Figure 3-1 shows the ARM968E-S memory map. 

Figure 3-1 ARM968E-S memory map
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3.2 Tightly-coupled memory address space

The TCM space is at the bottom of the memory map. The memory map allocates the 
bottom 4MB for the ITCM and the next 4MB for the DTCM. 

In practice, each TCM is likely to be much smaller than 4MB. The address decode for 
ARM968E-S processor accesses and DMA controller accesses is implemented so that 
each memory is aliased throughout its 4MB range. Figure 3-2 shows an example of a 
16KB ITCM aliased through the 4MB ITCM address space. 

Figure 3-2 ITCM aliasing example
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3.3 Bufferable write address space

The use of the AHB write buffer is controlled by both the CP15 c1 Control Register and 
the fixed address map. 

When the processor comes out of Reset, the AHB write buffer is disabled. All data 
writes to the AHB are performed as unbuffered. The processor can stall until the BIU 
completes the write on the AHB interface. 

When the AHB write buffer is enabled by setting bit 3 of the CP15 c1 Control Register, 
the data address (DA[31:0]) from the processor determines if the AHB write buffer is 
used. If DA[28] is set, the write is unbuffered. If DA[28] is clear, the write is buffered 
and uses the AHB write buffer. Buffered writes enable the processor to continue 
program execution while the write is performed on the AHB. If the AHB write buffer is 
full, the processor stalls until space in the buffer becomes available. See AHB write 
buffer on page 5-9 for descriptions of the BIU and AHB write buffer behavior. 

Note
 Writes to TCM address space do not write through to the AHB if the TCM being 
accessed is enabled. 

Writes to the address space of a disabled TCM are buffered AHB writes when the AHB 
write buffer is enabled or unbuffered AHB writes when the AHB write buffer is not 
enabled.
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System Control Coprocessor

This chapter describes how to use the cp15 registers in the System Control Coprocessor 
to configure the ARM968E-S processor and to control and monitor its operation. It 
contains the following sections: 

• About the System Control Processor on page 4-2

• Accessing CP15 registers on page 4-3

• CP15 register summary on page 4-4

• CP15 register descriptions on page 4-5

• CP15 instruction summary on page 4-14. 
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4.1 About the System Control Processor

You can use the System Control Coprocessor to:

• read the 32-bit ID code of the ARM968E-S processor 

• read the sizes of the ITCM and the DTCM 

• enable: 

— address alignment fault checking 

— big-endian or little-endian memory mapping 

— the AHB write buffer 

— the Instruction Tightly-Coupled Memory (ITCM) and Data 
Tightly-Coupled Memory (DTCM) 

— low vector location or high vector location 

— entry into Thumb state on PC loads. 

• perform wait-for-interrupt and drain-write-buffer operations 

• read the trace process ID 

• stall ITCM and DTCM accesses while the AHB write buffer is full, enable or 
disable the instruction prefetch buffer, and mask IRQ or FIQ interrupts while the 
ETM FIFO is full. 
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4.2 Accessing CP15 registers

You can access the CP15 registers only with MCR and MRC instructions and only in a 
privileged mode. Figure 4-1 shows the format of CP15 MCR and MRC instructions. 

Figure 4-1 CP15 MCR and MRC instruction format

The assembly code for these instructions is: 
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See the ARM Architecture Reference Manual for a description of the MCR and MRC 
instructions. 

20 4

1 CRm1111

Opcode_2

CRn RdL

Opcode_1

1110cond

31 28 27 24 19 16 15 12 11 8 3 023 21 7 5
ARM DDI 0311D Copyright © 2004, 2006 ARM Limited. All rights reserved. 4-3



System Control Coprocessor 
4.3 CP15 register summary

Table 4-1 lists the CP15 registers. 

Table 4-1 CP15 register summary

Name Access Reset value Description

CP15 c0 Device ID Register Read-only 0x41059680 See CP15 c0 Device ID Register on 
page 4-5

CP15 c0 TCM Size Register Read-only Implementation-
defineda

See CP15 c0 TCM Size Register on 
page 4-6

CP15 c1 Control Register Read/write Implementation-
definedb

See CP15 c1 Control Register on 
page 4-7

CP15 c7 core control operations Write-only - See CP15 c7 core control operations on 
page 4-9

CP15 c13 Trace Process ID Register Read/write 0x00000000 See CP15 c13 Trace Process ID Register 
on page 4-11

CP15 c15 Configuration Control Register Read/write 0x00000004 See CP15 c15 Configuration Control 
Register on page 4-11

a. Value at Reset determined by ITCM size and DTCM size. See Table 4-3 on page 4-6. 
b. Value at Reset determined by INITRAM and VINITHI pins. See Table 4-5 on page 4-8. 
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4.4 CP15 register descriptions

This section describes the CP15 registers. 

• CP15 c0 Device ID Register 

• CP15 c0 TCM Size Register on page 4-6 

• CP15 c1 Control Register on page 4-7 

• CP15 c7 core control operations on page 4-9 

• CP15 c13 Trace Process ID Register on page 4-11 

• CP15 c15 Configuration Control Register on page 4-11. 

4.4.1 CP15 c0 Device ID Register 

Use the read-only Device ID Register to read the 32-bit ID code of the ARM968E-S 
processor. 

Read the Device ID Register with the following instruction: 

MRC p15, 0, <Rd>, c0, c0, {0, 1, 3-7}; read Device ID Register 

When reading the Device ID Register, the opcode_2 field can be any value other than 2. 
Writing to the Device ID Register is Unpredictable. 

Figure 4-2 shows the bit fields of the Device ID Register. 

Figure 4-2 Device ID Register

Table 4-2 describes the bit fields of the Device ID Register. 

Part numberArchitectureImplementer

31 24 23 20 19 16 15 4 3 0

Major

revision

Minor

revision

Table 4-2 Encoding of the Device ID Register

Bit Name Definition Value

[31:24] Implementer Implementer’s trademark

ARM Limited uses the ASCII code for the letter A, 0x41 

0x41

[23:20] Major revision Major specification revision (0) 0x0

[19:16] Architecture ARM architecture version (v5TE) 0x5

[15:4] Part number Processor number (968) 0x968

[3:0] Minor revision Minor specification revision (1) 0x1
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4.4.2 CP15 c0 TCM Size Register

Use the read-only TCM Size Register to read the sizes of the ITCM and the DTCM. 

Read the TCM Size Register with the following instruction: 

MRC p15, 0, <Rd>, c0, c0, 2; read TCM Size Register

Writing to the TCM Size Register is Unpredictable. 

Figure 4-3 shows the bit fields of the TCM Size Register.

Figure 4-3 TCM Size Register

Table 4-3 describes the bit fields of the TCM Size Register. 

0

Reserved

1

ITCM size

31 23 11 6 5 222 18 17 15 14 13 10 3

DTCM size

Reserved Reserved

DTCM absent ITCM absent

Reserved Reserved

Table 4-3 Encoding of the TCM Size Register

Bit Name Definition

[31:23] - Reserved. 

[22:18} DTCM size DTCM size bits:

b00000 = 0KB

b00001 = 1KB

b00010 = 2KB

b00011 = 4KB

b00100 = 8KB

b00101 = 16 KB

b00110 = 32KB

b00111 = 64KB

b01000 = 128KB

b01001 = 256KB

b01010 = 512KB

b01011 = 1MB

b01100 = 2MB

b01101 = 4MB. 

At Reset, the DTCMSIZE[4:0] pins determine the value of the DTCM size field. 

[17:15] - Reserved. 

[14] DTCM absent Set when DTCMSIZE[4:0] = b00000. 

At Reset, the DTCMSIZE[4:0] pins determine the value of the DTCM absent bit. 

[13:11] - Reserved. 
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4.4.3 CP15 c1 Control Register

Use the read/write Control Register to: 

• prevent PC loads from changing the T bit 

• select high-address or low-address vector locations 

• enable the ITCM and DTCM 

• select big-endian or little-endian operation 

• enable the AHB write buffer 

• enable fault checking of address alignment. 

Access the Control Register with the instructions in Table 4-4. 

[10:6] ITCM size ITCM size bits:

b00000 = 0KB

b00001 = 1KB

b00010 = 2KB

b00011 = 4KB

b00100 = 8KB

b00101 = 16 KB

b00110 = 32KB

b00111 = 64KB

b01000 = 128KB

b01001 = 256KB

b01010 = 512KB

b01011 = 1MB

b01100 = 2MB

b01101 = 4MB. 

At Reset, the ITCMSIZE[4:0] pins determine the value of the ITCM size field. 

[5:3] - Reserved. 

[2] ITCM absent Set when ITCMSIZE[4:0] = b00000. 

At Reset, the ITCMSIZE[4:0] pins determine the value of the ITCM absent bit. 

[1:0] - Reserved. 

Table 4-3 Encoding of the TCM Size Register (continued)

Bit Name Definition

Table 4-4 Control Register instructions

Instruction Operation

MRC p15, 0, <Rd>, c1, c0, 0 Read Control Register

MCR p15, 0, <Rd>, c1, c0, 0 Write Control Register
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Figure 4-4 shows the Control Register bit fields. 

Figure 4-4 Control Register

Table 4-5 describes the bit fields of the Control Register. 

0

SBZ

1

SBO

31 11 6 4 216 15 14 13 8 3

LT

V

12

I B

7

SBO W D A

SBZ

SBZ

Table 4-5 Encoding of the Control Register

Bit Name Definition

[31:16] - Should Be Zero. 

[15] LT Load Thumb disable bit: 

1 = loading PC does not set T bit 

0 = loading PC sets T bit. 

Reset clears the LT bit. 

[14] - Should Be Zero. 

[13] V Exception vector location bit: 

1 = vector address range is 0xFFFF0000 to 0xFFFF001C 

0 = vector address range is 0x00000000 to 0x0000001C. 

At Reset, the VINITHI pin determines the value of the V bit. You can 
write to V after Reset. 

[12] I ITCM enable bit: 

1 = instruction accesses use ITCM interface 

0 = instruction accesses use AHB interface. 

At Reset, the INITRAM pin determines the value of the I bit. You can 
write to I after Reset. 

[11:8] - Should Be One. 

[7] B Big-endian bit: 

1 = big-endian memory mapping

0 = little-endian memory mapping. 

Reset clears the B bit. 

[6:4] - Should Be One. 
4-8 Copyright © 2004, 2006 ARM Limited. All rights reserved. ARM DDI 0311D



System Control Coprocessor 
4.4.4 CP15 c7 core control operations

Use CP15 c7 core control operations to: 

• put the processor in the low-power wait-for-interrupt state 

• drain the AHB and TCM write buffers. 

Perform the core control operations with the instructions in Table 4-6. 

Note
 For compatibility with existing software, the ARM968E-S processor also supports the 
following instruction for the wait-for-interrupt function: 

MCR p15, 0, <Rd>, c15, c8, 2 

[3] W AHB write buffer enable bit: 

1 = write buffer enabled 

0 = write buffer disabled. 

Clearing the W bit causes AHB write buffer entries to complete as 
buffered writes. Reset clears W. 

[2] D DTCM enable bit: 

1 = data accesses use DTCM interface 

0 = data accesses use AHB interface. 

At Reset, the INITRAM pin determines the value of the D bit. 

[1] A Address alignment fault checking enable bit: 

1 = fault checking of address alignment enabled 

0 = fault checking of address alignment disabled. 

Reset clears the A bit. 

[0] - Should Be Zero. 

Table 4-5 Encoding of the Control Register (continued)

Bit Name Definition

Table 4-6 Core control instructions

Instruction Operation

MCR p15, 0, <Rd>, c7, c0, 4 Enter wait-for-interrupt state

MCR p15, 0, <Rd>, c7, c10, 4 Drain write buffers
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Wait-for-interrupt operation

The wait-for-interrupt operation drains the AHB write buffer and puts the ARM968E-S 
processor in a low-power standby state. The processor clock stops from the time that the 
wait-for-interrupt instruction is executed until nFIQ, nIRQ, or EDBGRQ is asserted. 

Note
 Asserting nIRQ or nFIQ wakes the processor from wait-for-interrupt state even if the 
I or F interrupt disable bit is set in the CPSR. If interrupts are enabled, the ARM968E-S 
processor is guaranteed to take the interrupt before executing the next instruction after 
the wait-for-interrupt instruction. 

When debug is enabled, setting the debug request bit in the EmbeddedICE-RT Control 
Register also terminates the wait-for-interrupt state. The processor enters debug state 
before executing any more instructions. 

Entering wait-for-interrupt mode asserts the STANDBYWFI signal. You can use 
STANDBYWFI to shut down clocks to other system blocks that do not have to be 
clocked when the ARM968E-S processor is idle. 

The DMA interface has a separate clock enable, HCLKEND, that enables the DMA 
interface to continue operating while the ARM968E-S is in wait-for-interrupt mode. 
This feature enables you to use the external DMA controller to transfer data to and from 
the TCM before waking the processor. 

Drain-write-buffer operation

The drain-write-buffer operation acts as an explicit instruction memory barrier. It stalls 
instruction execution until the AHB and TCM write buffers are emptied. This operation 
is useful in real-time applications when a write to a peripheral must be completed before 
program execution continues. For example, it might be necessary to drain the write 
buffers when a peripheral in a bufferable region is the source of an interrupt. After 
interrupt servicing, the request must be removed before interrupts can be enabled again. 
This can be ensured by separating the store to the peripheral and the interrupt enable 
function with a drain-write-buffers operation. 
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4.4.5 CP15 c13 Trace Process ID Register

The read/write Trace Process ID Register enables the real-time trace tools to identify 
the currently executing process in multitasking environments. Use the instructions in 
Table 4-7 to access the Trace Process ID Register. 

Figure 4-5 shows the bit field of the Trace Process ID Register. 

Figure 4-5 Trace Process ID Register

The ETMPROCID[31:0] pins reflect the contents of the Trace Process ID Register. 
Reset clears the Trace Process ID Register. 

Note
 Writing to the Trace Process ID Register sets the ETMPROCIDWR signal for one 
clock cycle. 

4.4.6 CP15 c15 Configuration Control Register

Use the read/write Configuration Control Register to: 

• stall ITCM or DTCM accesses when the ITCM or DTCM write buffer contains 
data 

• disable the Instruction Prefetch Buffer (IPB) 

• mask FIQ or IRQ interrupts when the ETM FIFO is full. 

Table 4-7 Trace Process ID Register instructions

Instruction Operation

MRC p15, 0, <Rd>, c13, {c0-c15} Read Trace Process ID Register

MCR p15, 0, <Rd>, c13, {c0-c15} Write Trace Process ID Register

Trace process ID

31 0
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Access the Configuration Control Register with the instructions in Table 4-8. 

Figure 4-6 shows the bit fields of the Configuration Control Register. 

Figure 4-6 Configuration Control Register

Table 4-9 describes the bit fields of the Configuration Control Register. 

Table 4-8 Configuration Control Register instructions

Instruction Operation

MRC p15, 1, <Rd>, c15, c1, 0 Read Configuration Control Register

MCR p15, 1, <Rd>, c15, c1, 0 Write Configuration Control Register

31 02 131516171819

SBZSBZ DI B

FM

IM

SBZ

Table 4-9 Encoding of the Configuration Control Register

Bit Name Definition

[31:19] - Should Be Zero. 

[18] I ITCM order bit: 

1 = ITCM accesses stalled if ITCM write buffer contains data 

0 = ITCM accesses not stalled by data in ITCM write buffer. 

Asserting the I bit ensures that TCM accesses are performed in the order generated by the processor 
and that writes are committed to memory before subsequent reads are done. Asserting I when data is 
still in the TCM write buffer stalls any subsequent TCM access until the buffer is empty. Reset clears 
the I bit. 

[17] D DTCM order bit:

1 = DTCM accesses stalled if TCM write buffer contains data

0 = DTCM accesses not stalled by data in TCM write buffer. 

Asserting the D bit ensures that TCM accesses are performed in the order generated by the processor 
and that writes are committed to memory before subsequent reads are done. Asserting D when data 
is still in the TCM write buffer stalls any subsequent TCM access until the buffer is empty. Reset 
clears the D bit. 
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[16] B AHB instruction prefetch buffer disable bit: 

1 = instruction prefetch buffer disabled 

0 = instruction prefetch buffer enabled. 

When the B bit is set, all instruction accesses are performed as nonsequential transfers. See 
Instruction prefetch buffer on page 5-5. Reset clears B. 

[15:3] - Should Be Zero. 

[2] FM FIQ interrupt mask when ETM FIFO is full: 

1 = nFIQ cannot enable processor clocks when FIFOFULL is HIGH 

0 = nFIQ enables processor clocks until interrupt is serviced, but clocks are disabled on exit from 
FIQ mode. Reset sets the FM bit. 

[1] IM IRQ interrupt mask when ETM FIFO is full: 

1 = nIRQ cannot enable processor clocks when FIFOFULL is HIGH 

0 = nIRQ enables processor clocks until interrupt is serviced, but clocks are disabled on exit from 
IRQ mode. Reset clears the IM bit. 

[0] - Should Be Zero. 

Table 4-9 Encoding of the Configuration Control Register (continued)

Bit Name Definition
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4.5 CP15 instruction summary

Table 4-10 is a quick reference to the CP15 instructions. 

Table 4-10 CP15 instruction summary

Instruction Operation Reference

MRC p15, 0, <Rd>, c0, c0, {0, 1, 3-7}

MRC p15, 0, <Rd>, c0, c0, 2

Read Device ID Register 

Read TCM Size Register 

page 4-5

page 4-6

MRC p15, 0, <Rd>, c1, c0, 0

MCR p15, 0, <Rd>, c1, c0, 0

Read Control Register 

Write Control Register 
page 4-7

MCR p15, 0, <Rd>, c7, c0, 4 

MCR p15, 0, <Rd>, c15, c8, 2 

MCR p15, 0, <Rd>, c7, c10, 4 

Enter wait-for-interrupt state 

Enter wait-for-interrupt state 

Drain write buffers 

page 4-9

MRC p15, 0, <Rd>, c13, {c0-c15}

MCR p15, 0, <Rd>, c13, {c0-c15}

Read Trace Process ID Register 

Write Trace Process ID Register 
page 4-11

MRC p15, 1, <Rd>, c15, c1, 0

MCR p15, 1, <Rd>, c15, c1, 0

Read Configuration Control Register 

Write Configuration Control Register 
page 4-11
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Chapter 5 
Bus Interface Unit

This chapter describes the ARM968E-S Bus Interface Unit (BIU) and AHB write 
buffer. It contains the following sections: 

• About the BIU on page 5-2 

• Bus transfer characteristics on page 5-3 

• Instruction prefetch buffer on page 5-5 

• AHB write buffer on page 5-9 

• AHB bus master interface on page 5-12 

• AHB transfer descriptions on page 5-13 

• AHB clocking on page 5-17 

• CLK-to-HCLK skew on page 5-19. 
ARM DDI 0311D Copyright © 2004, 2006 ARM Limited. All rights reserved. 5-1



Bus Interface Unit 
5.1 About the BIU

The ARM968E-S processor uses the Advanced Microprocessor Bus Architecture 
(AMBA) Advanced High-performance Bus-Lite (AHB-Lite) interface. The AHB-Lite 
version of the AMBA interface addresses the requirements of synthesizable 
high-performance designs, including: 

• single rising-clock-edge operation 

• unidirectional buses 

• mapped burst transfers. 

See the AMBA Specification (Rev 2.0) for a full description of this bus architecture.

The BIU implements a fully-compliant AHB-Lite bus master interface with an 
Instruction Prefetch Buffer (IPB) and an AHB write buffer to increase system 
performance. The BIU is the link between the processor’s Tightly-Coupled Memories 
(TCMs) and the external AHB memory. The AHB memory or the DMA must be used 
to initialize the TCMs and to access code and data that are not assigned to the TCM 
address space. 
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5.2 Bus transfer characteristics

The BIU handles all data transfers and instruction transfers between the core clock 
domain and the AMBA bus clock domain. Any request from the IPB or the AHB write 
buffer that has to go outside the ARM968E-S processor is handled by the bus interface 
in a way that is transparent to the processor. 

The types of AMBA bus transfers are: 

• noncachable instruction fetches and data loads 

• nonbuffered data stores 

• buffered data stores 

• noncachable nonbufferable data swap operations. 

Each of the AMBA AHB bus transfers generates a signature. Table 5-1 lists the types of 
BIU transfers and their characteristics. 

5.2.1 Transfer size

HSIZE[1:0] defines transfer size and determines values of low-order address bits 
HADDR[1:0], that appear in the HADDR column of Table 5-1 as b or bb. An eight-bit 
transfer does not affect HADDR[1:0]. A 16-bit transfer forces HADDR[0] to 0. A 
32-bit transfer forces HADDR[1:0] to b00. 

Table 5-1 BIU transfer characteristics

ansfer HADDRa HTRANSb HPROTc HSIZE HBURST HLOCK HWRITE
HRDATA/ 
HWDATA

struction 
tch

[31:0] NS-S-S- . . . -S [0 0 p 0] 32 Incrd 0 0 [31:0]

ncachable 
ad

[31:0] NS [0 b p t] 8, 16, 32 Single/Incrd 0 0 [31:0]

nbufferable 
re

[31:0] NS-S-S- . . . -S [0 0 p 1] 8, 16, 32 Incrd 0 1 [31:0]

ffered store [31:2] bb NS-S-S- . . . -S [0 1 p 1] 8, 16, 32 Incrd 0 1 [31:0]

ap (load) [31:2] 00 NS [0 0 p 1] 32 Single 1 0 [31:0]

ap (store) [31:2] 00 NS [0 0 p 1] 32 Single 1 1 [31:0]

a. See Transfer size. 
b. See Sequential and nonsequential transfers on page 5-4. 
c. See BIU protection control on page 5-4. 
d. Incr burst type covers INCR, INCR4, INCR8, and INCR16.
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5.2.2 Sequential and nonsequential transfers

The HTRANS column in Table 5-1 on page 5-3 shows that transfers are Sequential (S) 
or NonSequential (NS). Any burst of four elements is always an NS-S-S-S transfer. Any 
burst of eight elements is always an NS-S-S-S-S-S-S-S transfer. For BIU bursts listed 
in Table 5-1 on page 5-3 that support an incrementing burst type, the burst can be 1, 4, 
8, or 16 elements, shown as NS-S-S- . . . -S. 

5.2.3 BIU protection control

The four HPROT column in Table 5-1 on page 5-3 shows the four protection attributes: 

• cachability = 0 for all ARM968E-S transfers. 

• bufferability: 

— data load or instruction fetch = 0 

— data stores = 0 (nonbufferable) or 1 (bufferable). 

• accessibility: 

— User mode = 0 

— privileged mode = 1. 

• transfer type: 

— instruction fetch = 0 

— data access = 1. 

5.2.4 BIU locked transfers

The BIU can perform locked bus transfers only for ARM swap instructions. It begins 
the swap operation by asserting HLOCK and performing a locked nonsequential read. 

The BIU keeps HLOCK asserted until the ARM968E-S processor performs the 
nonsequential write. Until the nonsequential write begins, the BIU issues idle AHB 
cycles. During the idle BIU AHB cycles, HSIZE, HADDR, HBURST, HPROT, and 
HWRITE hold their values. 
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5.3 Instruction prefetch buffer

The Instruction Prefetch Buffer (IPB) is four 32-bit entries deep. All nonsequential 
instruction fetches to AHB space cause the IPB to be flushed and an initial burst of four 
words to be performed on the AHB. After this initial burst, the IPB performs AHB 
accesses to keep the buffer full. If the processor takes an instruction out of the buffer on 
each clock cycle, the fetches on the AHB interface are performed as incrementing bursts 
of unspecified length (HBURST[2:0] = b001). 

Only valid instruction requests initiate prefetching. The IPB marks each entry with the 
error response returned from the AHB. The IPB also marks each entry with the external 
breakpoint request returned from the external memory system.

Instruction prefetching does not cross 1KB boundaries.

5.3.1 Optimized Thumb instruction prefetch

In Thumb state, the IPB depth is reduced to two words (four Thumb instructions). The 
processor performs a two-word incrementing burst for nonsequential fetches. When 
space becomes available, the IPB performs transfers to fill any vacant entries up to the 
buffer depth limit of two word entries available in Thumb state. 

5.3.2 IPB disable bit

Setting bit 16 of the CP15 c15 Configuration Control Register disables the IPB. See 
CP15 c15 Configuration Control Register on page 4-11. Reset clears bit 16 and enables 
prefetching. 

5.3.3 AHB error response in IPB

If an error response is returned from the AHB, it is stored in the IPB along with the 
instruction. If the instruction reaches the Execute stage of the pipeline, a Prefetch Abort 
exception occurs. 

5.3.4 IPB timing examples

This section gives two examples of IPB operation: 

• Nonsequential instruction fetch on page 5-6 

• Nonsequential instruction fetch after a data access on page 5-7. 
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Nonsequential instruction fetch

Figure 5-1 shows AHB prefetching in operation. In this case, the processor is executing 
code sequentially from the AHB. When each instruction returns from the AHB, it is 
returned to the processor. Because the processor is continuously requesting instructions 
from the AHB, none of the returned data is placed into the IPB. The AHB runs ahead 
of the processor to minimize the number of stall cycles. 

The processor then generates a nonsequential instruction fetch. This can be a result of 
a branch or an operation changing the value of the PC. The BIU terminates the current 
burst and starts a new prefetch operation with a burst of length four to fill the prefetch 
buffer. The first instruction from the burst is returned to the processor. The BIU keeps 
the IPB full by performing a burst of undefined length. This is because the processor is 
running sequentially and requesting instructions each cycle. Because this is a new burst, 
AHB indicates NSEQ. 

Figure 5-1 Nonsequential instruction fetch

Note
 All timing examples in this chapter are based on one-to-one clocking in which the 
processor and AHB share the same clock. See AHB clocking on page 5-17 for details of 
AHB clocking modes. 
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Nonsequential instruction fetch after a data access

Figure 5-2 on page 5-8 shows an AHB data access between instruction fetches. Because 
data accesses take precedence over instruction fetches, the instruction fetch starts after 
the data access. After the first instruction address is issued on the AHB, sequential 
instruction prefetching starts. The core does not advance until both of the simultaneous 
memory requests are satisfied. 

As in the previous example in Figure 5-1 on page 5-6, the IPB is not used immediately 
because each instruction returned from the BIU is immediately used by the processor. 
The second data memory request causes the processor to stall until the data request is 
completed. This causes the two outstanding instruction prefetches to be stored in the 
IPB. Prefetching stops as a result of a data request. 

The instruction request issued with the data access can be acknowledged as soon as the 
AHB transfer is complete. After the data access, prefetching can continue because the 
address is sequential to the previous instruction address. 
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Figure 5-2 Nonsequential instruction fetch after a data access
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5.4 AHB write buffer

The AHB write buffer can hold two addresses and four data words. The write buffer 
decouples the processor from the wait cycles caused by accessing the AHB. If a write 
is sent to the write buffer, the processor is able to continue program execution without 
having to wait for the write to complete on the AHB. If there is room in the write buffer, 
more writes can be committed to the write buffer without stalling. If the processor tries 
to write to a buffered location when the write buffer is full, the processor stalls until 
there is space in the write buffer. 

If the processor performs a read from AHB address space or an unbuffered write to 
AHB address space, the read stalls until all write buffer entries are written. Draining the 
write buffer ensures data coherency. 

5.4.1 Committing write data to the AHB write buffer

The AHB write buffer is used when the following conditions are met: 

• the write buffer is enabled 

• the write address is in a bufferable region 

• the write address is in AHB address space 

• the write address selects a tightly-coupled memory that is disabled. 

For details on enabling the AHB write buffer and about the fixed address map, see 

• CP15 c1 Control Register on page 4-7 

• About the ARM968E-S memory map on page 3-2. 

When the processor performs a write that conforms to these conditions, the address for 
the write is put into the address entry of the AHB write buffer FIFO. The next available 
entry data is used for the write data. If the write is a store multiple (STM), subsequent 
data entries are used for each word of the STM. It is therefore possible for the FIFO to 
contain four words of an STM. 

Alternatively, if several shorter bufferable STM or single write (STR) instructions are 
performed, one address entry is used for each write instruction. The worst case is that 
only one data word fills the FIFO caused by one STR write. In this case, the FIFO holds 
one address entry and one data entry. 

5.4.2 Draining write data from the AHB write buffer

The AHB write buffer can drain naturally when AHB writes occur each time data is 
committed to the FIFO. The processor stalls only if the write buffer overflows. 
However, there are times when a complete drain of the write buffer is enforced. 
ARM DDI 0311D Copyright © 2004, 2006 ARM Limited. All rights reserved. 5-9



Bus Interface Unit 
Natural AHB write buffer drain

When a write is being committed to the AHB write buffer, a signal to the BIU initiates 
an AHB write. The BIU then pops the address for the write from the write buffer 
followed by the data and starts an AHB transfer. This process might take several cycles 
because the write access is to an AHB slave in a bufferable region that has a multicycle 
response. If the AHB is running at a lower rate than the processor, there can be extra 
delay in the buffered write process. This can cause the processor to fill the write buffer 
by committing data faster than the write buffer can drain. Then the processor stalls until 
an entry becomes available. 

Placing an address in the AHB write buffer stores a marker with the address to indicate 
that the size of the write is byte, halfword, or word. An STM operation stores a 
sequentiality marker with the data. The sequentiality marker indicates that the BIU must 
use the address incrementor to produce the AHB addresses for the second and following 
writes of the STM. These markers enable the write buffer to store an address with only 
one FIFO entry, leaving more room for data. 

Enforced AHB write buffer drain

There are two situations in which the processor stalls and the AHB write buffer is forced 
to drain completely before program execution can continue: 

• the processor requests an instruction fetch, data load, or unbuffered AHB write 

• the processor performs a drain-write-buffer operation. 

AHB read access requested

To ensure data coherency, the processor must be prevented from reading a location 
when new data for that location is still in the AHB write buffer. If the read occurs before 
the write buffer is drained, the processor reads the old data, causing a data coherency 
failure. 

For this reason, whenever an AHB load or instruction fetch is requested, the processor 
must be stalled until the write buffer is drained. There is no dedicated logic to initiate a 
write buffer drain. However, there is dedicated logic that stalls the processor until the 
last buffered write is completed on the AHB. 

Drain-write-buffer operation

You can use an MCR instruction to CP15 c7 to stall the processor until the AHB write 
buffer is empty. This operation is described in CP15 c7 core control operations on 
page 4-9. This instruction is useful when a write must be completed before program 
execution can continue. 
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5.4.3 Enabling the AHB write buffer

Setting bit 3 of the CP15 c1 Control Register enables the AHB write buffer. When bit 3 
is set, all writes to bufferable address locations use the write buffer. If a slave peripheral 
in a bufferable region returns an AHB Data Abort, the abort is ignored when the write 
buffer is enabled. 

Note
 For debugging purposes, you can disable the AHB write buffer to enable AHB Data 
Aborts to be returned from bufferable regions. 

5.4.4 Disabling the AHB write buffer

When data is committed to the AHB write buffer, it is always written to the AHB. 
Disabling the write buffer by clearing bit 3 of the CP15 c1 Control Register causes any 
existing data in the write buffer to be written. Performing the wait-for-interrupt 
operation also causes any data in the write buffer to be written. 

To prevent buffered writes after disabling the write buffer or after the wait-for-interrupt 
operation, first perform the drain-write-buffer operation. 
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5.5 AHB bus master interface

The ARM968E-S processor has the AHB-Lite bus master interface. See the AMBA 
Specification (Rev 2.0) for a detailed description of the AHB protocol. 

5.5.1 Overview of AHB

The AHB architecture is based on separate cycles for address and data. The address and 
control values for an access are broadcast from the rising edge of HCLK in the cycle 
before the data is expected to be read or written. During this data cycle, the address and 
control values for the next cycle are driven out. This leads to a fully-pipelined address 
architecture. 

When an access is in its data cycle, a slave can wait the access by driving the HREADY 
response LOW. This has the effect of stretching the current data cycle and the pipelined 
address and control for the next access. This creates a system in which all AHB masters 
and slaves sample HREADY on the rising edge of the HCLK to determine if an access 
is complete and a new address can be sampled or driven out. 
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5.6 AHB transfer descriptions

The ARM968E-S BIU performs a subset of the possible AHB bus transfers. This 
section describes the transfers that can be performed and some back-to-back transfer 
cases: 

• Back-to-back data transfers 

• Data burst crossing a 1KB boundary on page 5-15 

• SWP instruction on page 5-15. 

5.6.1 Back-to-back data transfers

Figure 5-3 shows bus activity when a sequence of STR instructions is executed with no 
AHB instruction fetches. The processor is executing instructions from the TCM space. 

In cycle 1 the processor starts a nonsequential data write. A series of nonsequential and 
idle transfers is indicated for each access. The processor is re-enabled in cycle 9.

Figure 5-3 Back-to-back writes followed by a read
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Note
 Executing a sequence of back-to-back LDR instructions produces the same series of 
nonsequential and idle transfers. 

STM followed by instruction fetch

Figure 5-4 shows an example of an STM transferring four words, immediately followed 
by an instruction fetch. The instruction read begins with a nonsequential/sequential 
sequence after the final sequential data access. In this example, subsequent instruction 
fetches are sequential. Instruction prefetching is enabled so that instruction fetches 
appear on the AHB before the processor requests them. 

Figure 5-4 Single STM followed by sequential instruction fetch
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Data burst crossing a 1KB boundary

The AMBA Specification (Rev 2.0) states that sequential accesses must not cross 1KB 
boundaries. The processor splits sequential accesses that cross a 1KB boundary into two 
sets of separate accesses. 

Figure 5-5 shows bus activity with two back-to-back STM instructions crossing a 1KB 
boundary. DA + 8 is the first address in a new 1KB region. The two sets of transfers 
begin with a nonsequential access and are separated by idle cycles. In this example, 
instructions are being fetched from the ITCM. 

Figure 5-5 Data burst crossing a 1KB boundary

SWP instruction

The SWP instruction performs an atomic read-modify-write operation. It is commonly 
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If the processor performs an SWP operation to an AHB address location, the access is 
always unbuffered to ensure that the processor stalls until the write occurs on the AHB. 
The BIU asserts the HMASTLOCK output to prevent the AHB arbiter from providing 
ownership to a different master, ensuring that the read-modify-write is atomic. In the 
example in Figure 5-6, instructions are being fetched from the ITCM. 

Figure 5-6 SWP instruction
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5.7 AHB clocking

The ARM968E-S processor uses a single rising-edge clock signal, CLK, to time all 
internal activity. In a system with an embedded processor, it can be best to run the AHB 
at a lower clock rate. To support a lower AHB clock rate, the processor must have a 
clock enable, HCLKEN, to time AHB transfers. 

The HCLKEN input is driven HIGH around a rising edge of CLK to indicate that this 
rising edge is also a rising edge of HCLK. HCLK must therefore be synchronous to 
CLK. 

When the processor is running from TCM or performing writes using the AHB write 
buffer, the HCLKEN and HREADY inputs are decoupled from the SYSCLKEN stall 
signal. The processor is stalled only by TCM stall cycles or if the write buffer overflows. 
This means that the processor is executing instructions at the faster CLK rate and is 
decoupled from the HCLK domain AHB system. 

If however, an AHB read or unbuffered write is required, the processor stalls until the 
AHB transfer is complete. Because the AHB system is being clocked by the slower 
HCLK, the processor must examine HCLKEN to detect when to drive out the AHB 
address and control signals to start an AHB transfer. HCLKEN then has to detect the 
following rising edges of HCLK so that the BIU can detect when the access completes. 
Figure 5-7 shows an example of an AHB read with a 3:1 ratio of CLK to HCLK. 

Figure 5-7 AHB 3:1 clocking example
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If the slave being accessed at the HCLK rate has a multicycle response, the HREADY 
input to the processor is driven LOW until the data is ready to be returned. The BIU 
must therefore perform a logical AND of the HREADY response and HCLKEN to 
detect that the AHB transfer has completed. When the AND is true, the processor is then 
enabled by reasserting SYSCLKEN. 

Note
 Before the processor can start an AHB access, it must wait until it receives the next 
HCLKEN pulse. Then it must wait until the access is complete. The stall before the 
start of the access is a synchronization penalty, and the worst case can be expressed in 
CLK cycles as the CLK-to-HCLK ratio minus one. 
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5.8 CLK-to-HCLK skew

The ARM968E-S processor drives out the AHB address on the rising edge of CLK 
when the HCLKEN input is true. The AHB outputs have output hold and delay values 
relative to CLK. However, these outputs are used in the AHB system where HCLK is 
used to time the transfers. Similarly, inputs to the processor are timed relative to HCLK 
but are sampled within the processor with CLK. Minimizing the skew between HCLK 
and CLK prevents hold time issues from CLK to HCLK on outputs and from HCLK 
to CLK on inputs. 

5.8.1 Clock tree insertion at top level

The processor clock tree enables an evenly distributed clock to be driven to all the 
registers in the design. As Figure 5-8 on page 5-20 shows, the registers that drive AHB 
outputs and sample AHB inputs are timed off CLK’ at the bottom of the inserted clock 
tree and are subject to the clock tree insertion delay. When the processor is embedded 
in an AHB system, the clock generation logic to produce HCLK must be constrained 
so that it matches the insertion delay of the clock tree within the processor. This can 
easily be done by performing a top-level clock tree insertion for the processor and the 
embedded system at the same time. 
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Figure 5-8 CLK to HCLK sampling

In this example, the slave peripheral has an input setup and hold time and an output hold 
and valid time relative to HCLK. The ARM968E-S processor has an input setup and 
hold time and an output hold and valid relative to CLK’, the clock at the bottom of the 
clock tree. For optimal performance, clock tree insertion must be used to balance 
HCLK to match CLK’. 

5.8.2 Hierarchical clock tree insertion

If clock tree insertion is performed before embedding the processor, buffers are added 
on input data to match the clock tree so that the setup and hold is relative to the top level 
CLK. This is guaranteed to be safe at the expense of extra buffers in the data input path. 
However, inserting the buffers can limit operating frequency. 

The HCLK domain AHB peripherals must still meet the ARM968E-S input setup and 
hold requirements. Because the processor inputs and outputs are now relative to CLK, 
the outputs appear comparatively later by the value of the insertion delay. This 
ultimately leads to lower AHB operating frequency. 
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Chapter 6 
Tightly-Coupled Memory Interface

This chapter describes the interface for the Data and Instruction Tightly-Coupled 
Memory (DTCM and ITCM). It contains the following sections: 

• About the TCM interface on page 6-2 

• Enabling TCM on page 6-4 

• TCM write buffers on page 6-7 

• TCM size on page 6-8 

• TCM error detection signals on page 6-9 

• Interface timing on page 6-10 

• TCM implementation examples on page 6-16. 
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6.1 About the TCM interface

The ARM968E-S processor supports both instruction and data TCMs. TCM accesses 
are deterministic and do not access the AHB. Therefore, you can use the DTCM and 
ITCM to store real-time, performance-critical code. 

The features of the TCM interface include: 

• independent ITCM and DTCM sizes of 0KB or 1KB-4MB in power-of-two 
increments 

• alternately accessed DTCM ports, D0TCM and D1TCM, for simultaneous, 
interleaved DMA and processor access to DTCM at 32-bit (word) granularity 

• software visibility and programmability of TCM size and enable 

• boot control for ITCM 

• data access to the ITCM for literal pool generation in code 

• simple SRAM-style interface supporting both reads and writes 

• variable TCM wait state control for ITCM and DTCM 

• separate AHB-Lite slave interface for DMA engine. 

The TCM is located in the TCM address space. See Chapter 3 Memory Map. 

Figure 6-1 on page 6-3 shows the structure of the TCM interface. 
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Figure 6-1 TCM interface
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6.2 Enabling TCM

This section describes how to use the two mechanisms for controlling the enable of the 
TCM:

• Using INITRAM input pin

• Using CP15 c1 Control Register on page 6-5.

6.2.1 Using INITRAM input pin

The INITRAM pin is provided to enable the ARM968E-S macrocell to boot with both 
external instruction and data memory blocks either enabled or disabled. Two resets are 
described in the following sections:

• Reset with INITRAM LOW

• Reset with INITRAM HIGH.

Reset with INITRAM LOW

If INITRAM is held LOW during reset, the ARM968E-S macrocell comes out of reset 
with both external instruction and data memory disabled. All accesses to external 
instruction and data memory space go to the AHB. The TCMs can then be individually 
or jointly enabled by writing to the CP15 Control Register.

Reset with INITRAM HIGH

If INITRAM is held high during reset, both external instruction and data memory are 
enabled when the ARM968E-S macrocell comes out of reset. This is normally used for 
a warm reset where the TCM has already been programmed before the application of 
HRESETn to the ARM968E-S macrocell. In this case, the TCM contents are preserved 
and the ARM968E-S macrocell can run directly from the TCM following reset. Either 
one or both TCMs can be further disabled or enabled by writing to the CP15 Control 
Register.

Note
 If INITRAM is held HIGH during a cold reset (the TCM has not previously been 
initialized), the VINITHI pin must be set HIGH to ensure that the ARM968E-S 
macrocell boots from 0xFFFF0000, that is in AHB address space and is substantially 
outside the TCM address space. This is necessary because if VINITHI is LOW, the 
ARM968E-S macrocell attempts to boot from 0x00000000, and this selects the 
uninitialized ITCM.
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6.2.2 Using CP15 c1 Control Register

When out of Reset, the state of CP15 c1 Control Register determines the behavior of the 
TCM, as described in the following sections:

• Enabling the ITCM

• Disabling the ITCM

• Enabling the DTCM on page 6-6

• Disabling the DTCM on page 6-6.

Enabling the ITCM

You can enable the ITCM interface by setting bit [12] of the CP15 c1 Control Register. 
You must access this register in a read-modify-write fashion to preserve the contents of 
the bits not being modified. See CP15 c1 Control Register on page 4-7 for details of 
how to read and write the CP15 c1 Control Register. After you enable the ITCM 
interface, all future ARM9E-S core instruction fetches and data accesses to the ITCM 
address space cause the ITCM interface to be accessed as shown in Figure 3-1 on 
page 3-2.

Enabling the ITCM interface greatly increases the performance of the ARM968E-S 
processor because the majority of accesses to it can be performed with no stall cycles, 
whereas accessing the AHB might cause several stall cycles for each access. Care must 
be taken to ensure that the ITCM interface is appropriately initialized before it is 
enabled and used to supply instructions to the ARM9E-S core. If the core executes 
instructions from uninitialized ITCM interface, the behavior is Unpredictable.

Disabling the ITCM 

You can disable the ITCM interface by clearing bit [12] of the CP15 c1 Control Register. 
After you disable the ITCM interface, all further ARM9E-S core instruction fetches 
access the AHB. If the core performs a data access to the ITCM address space as shown 
in Figure 3-1 on page 3-2, an AHB access is performed.

The contents of the memory are preserved when it is disabled. If it is re-enabled, 
accesses to previously initialized memory locations return the preserved data.

Note
 The TCM write buffers must be drained before disabling the ITCM interface.
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Enabling the DTCM

You can enable the DTCM interface by setting bit [2] of the CP15 c1 Control Register. 
See CP15 c1 Control Register on page 4-7 for details of how to read and write this 
register. After you enable the DTCM interface, all future read and write accesses to the 
DTCM address space, as shown in Figure 3-1 on page 3-2, cause the DTCM interface 
to be accessed.

Disabling the DTCM

You can disable the DTCM by clearing bit [2] of the CP15 c1 Control Register. After 
you disable the DTCM, all further reads and writes to the DTCM address space, as 
shown in Figure 3-1 on page 3-2, access the AHB. 

Note
 The TCM write buffers must be drained before disabling the DTCM interface.
6-6 Copyright © 2004, 2006 ARM Limited. All rights reserved. ARM DDI 0311D



Tightly-Coupled Memory Interface 
6.3 TCM write buffers

Each TCM write buffer is two entries deep. Each entry is an address and data pair. In 
normal operation, the data for a write access to the TCM address space is held in the 
TCM write buffer until it is forced out by another write to the TCM address space or by 
natural drain when there are no read requests to the TCM address space. 

Write accesses from the processor always go into the TCM write buffer. If there is space 
in the TCM write buffer, writes are always single-cycle operations regardless of external 
TCM wait states. If there is no space in the TCM write buffer, any write access stalls the 
processor until a TCM write buffer entry becomes free. 

6.3.1 Forcing strict read/write ordering

In normal operation, the TCM write buffer drains naturally into the TCM whenever 
there are no read accesses to the TCM address space. One effect of this drain mechanism 
is that read and write accesses to the TCM can be in an order different from that issued 
by the processor. If the TCM write buffer contains the data required by a read access, 
data is returned from the buffer. Otherwise, a read can bypass a write that is pending in 
the TCM write buffer when the read is to a different address. 

Read and write accesses to DTCM and ITCM can be maintained in the order that the 
processor generated them by using the TCM order bits in the CP15 c15 Configuration 
Control Register. See CP15 c15 Configuration Control Register on page 4-11. When 
the TCM order bit is set, the TCM write buffer is still used but any subsequent read 
accesses to the TCM are stalled until the buffer is emptied. 

To ensure correct operation, perform a drain-write-buffer operation immediately prior 
to setting the TCM order bit. To drain the TCM and AHB write buffers, use a CP15 c7 
core control operation. See Drain-write-buffer operation on page 4-10. 
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6.4 TCM size

The TCM supports a programmable memory size with a fixed offset defined in the 
ARM968E-S memory map. Table 6-1 shows how the ITCMSIZE[4:0] and 
DxTCMSIZE[4:0] inputs control TCM RAM sizes. 

The ITCMSIZE[4:0] and DxTCMSIZE[4:0] inputs are used to ensure that write 
accesses to aliased addresses return the correct data when read. For correct operation, 
the ITCMSIZE[4:0] and DxTCMSIZE[4:0] values must match the instantiated 
memory size. 

The ITCMSIZE[4:0] and DxTCMSIZE[4:0] inputs are treated as static inputs to the 
processor, and they must be defined at implementation time. Changing these inputs 
while the processor is operating results in undefined behavior. 

Table 6-1 Supported TCM RAM sizes

TCMSIZE[4:0] inputs TCM RAM size

b00000 Reserved

b00001

b00010

b00011

1KB

2KB

4KB

b00100

b00101

b00110

b00111

8KB

16KB

32KB

64KB

b01000

b01001

b01010

b01011

128KB

256KB

512KB

1MB

b01100

b01101

b01110

b01111

2MB

4MB

Reserved

Reserved

b1xxxx Reserved
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6.5 TCM error detection signals

Large SRAM arrays are susceptible to errors caused by alpha particle radiation. These 
errors can result in incorrect data being returned. You can use parity checking or some 
form of error detection outside the processor to detect these errors. 

To enable the processor to support external error detection on the TCMs, there is one 
error signal for each of the TCMs: 

• D0TCMERROR and D1TCMERROR 

• ITCMERROR. 

The error signals inform the processor of error conditions during TCM read accesses 
and are ignored during write accesses. These signals are valid in the same clock cycle 
as the data returned from the TCM, and the processor ignores them at all other times. 

Error detection is performed external to the processor. If error support is not required, 
DxTCMERROR and ITCMERROR must be tied LOW. Because the processor is 
capable of performing byte accesses, parity information must be generated for each 
byte. The parity bit must be generated at the same time as the data is written to memory. 
Data is always read from the TCMs in 32-bit words, and a parity error in any byte must 
be returned to the processor as an ORing of the byte parity and reflected on the 
TCMERROR pins. 

For data reads from either the ITCM or DTCM, any error returned causes a Data Abort 
exception. The exception handler determines what corrective action, if any, to take. 

For instruction fetches from the ITCM, any error returned causes a Prefetch Abort 
exception if the processor tries to execute the returned instruction. 

Because of the write buffers in the TCM controller, any read of the TCM by the 
ARM968E-S processor can result in a partial or full hit in a TCM write buffer. When 
read results in a full hit in a TCM write buffer, the processor does not generate a request, 
and TCMERROR is ignored. In the case of a partial hit, TCMERROR is returned to 
the processor. 

Memory must be initialized to prevent spurious errors. 
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6.6 Interface timing

This section gives examples of typical TCM interface transfers:

• TCM reads with zero wait states 

• TCM reads with one wait state 

• TCM reads with four wait states on page 6-11 

• TCM writes with zero wait states on page 6-12 

• TCM write with one wait state on page 6-13 

• TCM write with two wait states on page 6-13 

• TCM accesses with varying TCM wait states on page 6-14

• Speculative TCM read access on page 6-15.

6.6.1 TCM reads with zero wait states

Figure 6-2 is an example of single-cycle TCM read accesses. ITCMWAIT is never 
asserted, and there are no read delays. Read data must be driven in the cycle after the 
address and TCM control signals are driven. 

Figure 6-2 TCM reads with zero wait states

6.6.2 TCM reads with one wait state

Figure 6-3 on page 6-11 is an example of two-cycle TCM read accesses. ITCMWAIT 
delays the R_B and R_C reads for one cycle. Read data must always be driven in the 
cycle after ITCMWAIT is deasserted. 
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Figure 6-3 TCM reads with one wait state

6.6.3 TCM reads with four wait states

Figure 6-4 on page 6-12 is an example of a five-cycle TCM read access. ITCMWAIT 
delays the R_B read for four cycles. Read data must always be driven in the cycle after 
ITCMWAIT is deasserted. 
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Figure 6-4 TCM reads with four wait states

6.6.4 TCM writes with zero wait states

Figure 6-5 is an example of single-cycle TCM write accesses. ITCMWAIT is never 
asserted, and there are no write delays. Write data must be driven in the same cycle as 
the address and the TCM control signals. 

Figure 6-5 TCM writes with zero wait states
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6.6.5 TCM write with one wait state

Figure 6-6 is an example of a two-cycle TCM write access. ITCMWAIT extends the 
completion of both the W_B and W_C writes for one cycle each. Write data must be 
driven in the same cycle as the address and the TCM control signals.

Figure 6-6 TCM write with one wait state

6.6.6 TCM write with two wait states

Figure 6-7 on page 6-14 is an example of a three-cycle TCM write access. ITCMWAIT 
extends the completion of both the W_B and W_C writes for two cycles each. Write 
data must be driven in the same cycle as the address and TCM control signals.
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Figure 6-7 TCM writes with two wait states

6.6.7 TCM accesses with varying TCM wait states

Figure 6-8 shows a mix of read and write transfers with wait states of different lengths. 
The lengths of wait states are often transfer-dependent.

Figure 6-8 TCM reads and writes with wait states of varying length
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6.6.8 Speculative TCM read access

All read accesses to both the instruction and data TCMs are speculative. Because of the 
speculative nature of reads to both Instruction and Data TCMs, ARM Limited 
recommends that you do not use any read-sensitive memory or peripherals on the TCM 
ports. However, if the system must use read-sensitive memory, you can use a data buffer 
to hold the contents of the last read and forward that data in case of a consecutive read 
access to the same memory location.
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6.7 TCM implementation examples

This section contains the following examples:

• Simplest zero-wait-state RAM example 

• Byte-banks of RAM examples on page 6-17 

• Multiple banks of RAM example on page 6-18 

• Sequential RAM example on page 6-19 

• Single or multiple wait-state RAM example on page 6-20. 

Note
 The examples in this section are for the ITCM. They also apply to the D0TCM and 
D1TCM, except that each DTCM address range is DxTCMADDR[21:3], half the 
address range of the ITCM. 

The additional logic required for implementing the examples in this section is the 
responsibility of the implementer. 

6.7.1 Simplest zero-wait-state RAM example

Figure 6-9 shows a single RAM device with a 32-bit data width connected directly to 
the TCM interface. The ITCMWAIT signal must be tied off to zero. 

Figure 6-9 Simplest zero wait state RAM example

Inverters must be used if there are any polarity differences between the RAM input 
signals and those of the TCM interface. When the RAM chip select is active-LOW, an 
inverter must be placed between ITCMCS and the RAM chip select. This integration 
places a limit on the size of the TCMs. Multiple banks of RAM can be used to overcome 
this limitation. See Multiple banks of RAM example on page 6-18.
6-16 Copyright © 2004, 2006 ARM Limited. All rights reserved. ARM DDI 0311D



Tightly-Coupled Memory Interface 
6.7.2 Byte-banks of RAM examples

If byte-write RAM is not available, you can use four banks of 8-bit wide RAM by 
routing each of the four bits of ITCMWE to one of the four RAM write enable inputs, 
as shown in Figure 6-10. 

Figure 6-10 Byte-banks of RAM example

You can save a small amount of power by ANDing the chip select for each RAM device 
with (ITCMWE OR ITCMnRW). Then byte and halfword writes generate requests 
only to the required byte RAM as shown in Figure 6-11 on page 6-18.
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Figure 6-11 Alternative byte-banks of RAM example

6.7.3 Multiple banks of RAM example

With multiple RAM devices, the read data can come from one of two or more devices. 
To ensure that write data is not written to all devices, additional logic is required on 
either the chip select or the write enable. Figure 6-12 on page 6-19 shows an example 
of multiple banked RAMs with the chip select signal ITCMCS ANDed with the top 
address signal ITCMADDR[18]. This configuration is valid only if ITCMWAIT is 
tied LOW. 
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Figure 6-12 Multiple banks of RAM example

In the example shown in Figure 6-12, the reads and writes only occur on the RAM 
device required. This implementation uses less power than that shown in Figure 6-11 on 
page 6-18.

6.7.4 Sequential RAM example

If the RAM devices require a single wait-state except for sequential reads, the device 
can be connected as shown in Figure 6-13. The ITCMWAIT signal is derived from an 
inverter. 

Figure 6-13 Sequential RAM example
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6.7.5 Single or multiple wait-state RAM example

If the RAM devices require more than one cycle for all accesses, logic is required to 
assert the wait signal for the required number of cycles. Figure 6-14 shows a wait state 
controller asserting the wait signal as required. The power control block removes power 
to the TCM when it is not required.

Figure 6-14 Single or multiple wait-state RAM example
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DMA Interface

This chapter describes the interface for the Direct Memory Access (DMA) controller. It 
contains the following sections: 

• About the DMA interface on page 7-2 

• Bus transfer characteristics on page 7-4 

• AHB bus slave interface on page 7-7 

• Wait-for-interrupt mode on page 7-8 

• AHB transfer descriptions on page 7-9. 
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7.1 About the DMA interface

The ARM968E-S processor uses the Advanced Microprocessor Bus Architecture 
(AMBA) Advanced High-performance Bus-Lite (AHB-Lite) interface. The AHB-Lite 
version of the AMBA interface addresses the requirements of synthesizable 
high-performance designs, including: 

• single rising-clock-edge operation 

• unidirectional buses. 

See the AMBA Specification (Rev 2.0) for full details of this bus architecture. 

Note
 The AHB-Lite architecture does not support RETRY or SPLIT responses from slaves. 

The DMA interface implements the AHB-Lite bus slave interface. It is tightly integrated 
with the Tightly-Coupled Memory (TCM) interface to prevent access contention with 
the processor. The DMA clock enable, HCLKEND, enables transfer of data and code 
to and from the TCM even while the processor is in the low-power wait-for-interrupt 
state. HCLKEND also controls the frequency ratio of CLK to the DMA controller bus. 
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Figure 7-1 DMA interface
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7.2 Bus transfer characteristics

The AHB-Lite DMA interface handles all data transfers between an external DMA 
controller and the TCM in a way that is transparent to the processor. The types of DMA 
interface transfers are: 

• data writes 

• data reads. 

Each of the AMBA AHB bus transfers generates a signature. Table 7-1 lists the types of 
DMA interface transfers and their characteristics. 

Table 7-1 DMA transfer characteristics

Transfer HADDRD HTRANSD HSIZED HWRITED
HRDATAD/
HWDATAD BIGEND

Data write [31:2] b00 NS- . . . -NS or NS-S- . . . -S Byte 1 [7:0] 0

Data write [31:2] b01 NS- . . . -NS or NS-S- . . . -S Byte 1 [15:8] 0

Data write [31:2] b10 NS- . . . -NS or NS-S- . . . -S Byte 1 [23:16] 0

Data write [31:2] b11 NS- . . . -NS or NS-S- . . . -S Byte 1 [31:24} 0

Data write [31:2] b0x NS- . . . -NS or NS-S- . . . -S Halfword 1 [15:0] 0

Data write [31:2] b1x NS- . . . -NS or NS-S- . . . -S Halfword 1 [31:16] 0

Data write [31:2] b00 NS- . . . -NS or NS-S- . . . -S Word 1 [31:0] 0

Data write [31:2] b00 NS- . . . -NS or NS-S- . . . -S Byte 1 [31:24] 1

Data write [31:2] b01 NS- . . . -NS or NS-S- . . . -S Byte 1 [23:16] 1

Data write [31:2] b10 NS- . . . -NS or NS-S- . . . -S Byte 1 [15:8] 1

Data write [31:2] b11 NS- . . . -NS or NS-S- . . . -S Byte 1 [7:0] 1

Data write [31:2] b0x NS- . . . -NS or NS-S- . . . -S Halfword 1 [31:16] 1

Data write [31:2] b1x NS- . . . -NS or NS-S- . . . -S Halfword 1 [15:0] 1

Data write [31:2] b00 NS- . . . -NS or NS-S- . . . -S Word 1 [31:0] 1

Data read [31:0] NS- . . . -NS or NS-S- . . . -S Word 0 [31:0] -
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7.2.1 Transfer size

HSIZED[1:0], HADDRD[1:0], and BIGEND define the transfer size of a write 
transfer. 

Table 7-2 shows how the transfer size (HSIZED[1:0]), address offset 
(HADDRD[1:0]), and endian format (BIGEND) determine which byte lanes are used 
in big-endian writes. 

Table 7-3 shows how the transfer size (HSIZED[1:0]), address offset 
(HADDRD[1:0]), and endian format (BIGEND) determine which byte lanes are used 
in little-endian writes. 

Table 7-2 Active byte lanes with a 32-bit big-endian data bus

Transfer 
size

Address 
offset

HWDATAD 
[31:24]

HWDATAD 
[23:16]

HWDATAD 
[15:8]

HWDATAD 
[7:0]

Word 0 Active Active Active Active

Halfword 0 Active Active - -

Halfword 2 - - Active Active

Byte 0 Active - - -

Byte 1 - Active - -

Byte 2 - - Active -

Byte 3 - - - Active

Table 7-3 Active byte lanes with a 32-bit big-endian data bus

Transfer 
size

Address 
offset

HWDATAD 
[31:24]

HWDATAD 
[23:16]

HWDATAD 
[15:8]

HWDATAD 
[7:0]

Word 0 Active Active Active Active

Halfword 0 - - Active Active

Halfword 2 Active Active - -

Byte 0 - - - Active

Byte 1 - - Active -

Byte 2 - Active - -

Byte 3 Active - - -
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7.2.2 Sequential and nonsequential transfers

The HTRANSD column in Table 7-1 on page 7-4 shows that transfers on the DMA 
interface can be sequential (NS- S- . . . -S) or nonsequential (NS- . . . -NS). 

7.2.3 Burst types 

The DMA interface supports all burst types. 

7.2.4 Protection control

The HPROTD[3:0] signals are not implemented and have no effect on the operation of 
the DMA interface. 

7.2.5 Error response limitations

The DMA interface supports error responses from the TCM for data reads but ignores 
error responses for write transfers. 

If the TCM error detection logic generates an error response during a DMA read, the 
DMA interface drives the HRESPD signal HIGH. It is the responsibility of the software 
to disregard that data transfer and request the data again. 
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7.3 AHB bus slave interface

The DMA interface supports the AHB-Lite bus slave interface. See the AMBA 
Specification (Rev 2.0) for a detailed description of the AHB protocol. 

The AHB architecture is based on separate cycles for address and data. The address and 
control values for an access are broadcast from the rising edge of CLK in the cycle 
before the data is expected to be read or written. During this data cycle, the address and 
control values for the next cycle are driven out, providing fully-pipelined bus operation. 

When an access is in its data cycle, the DMA interface can wait the access by driving 
the HREADYD response LOW. This has the effect of stretching the current data cycle 
and the pipelined address and control for the next access. This creates a system in which 
the DMA controller, the AHB master, samples HREADYD on the rising edge of CLK 
to determine if an access is complete and a new address can be sampled or driven out. 
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7.4 Wait-for-interrupt mode

The wait-for-interrupt instructions put the ARM968E-S processor into a low-power 
state: 

MCR p15, 0, Rd, c7, c0, 4 

MCR p15, 0, Rd, c15, c8, 2 

Either of these instructions stops the internal processor clocks until an interrupt (IRQ or 
FIQ) or a debug request (EDBGRQ) occurs. The switch into wait-for-interrupt mode is 
delayed until all write buffers are drained and the memory system is in a quiescent state. 

The DMA interface has a separate clock enable, HCLKEND, that enables the DMA 
and TCM interfaces to continue operating while the ARM968E-S processor is in 
wait-for-interrupt mode. This feature enables you to use the external DMA controller to 
transfer data to and from the TCM before waking the processor. 

Entering wait-for-interrupt mode asserts the STANDBYWFI signal. The system 
designer can use STANDBYWFI to shut down clocks to other SoC blocks that do not 
have to be clocked when the ARM968E-S processor is idle. 

The STANDBYWFI signal is deasserted in the cycle following an interrupt or a debug 
request. It is guaranteed that no form of access on any external interface is started until 
the cycle after STANDBYWFI is deasserted. Figure 7-2 shows the deassertion of the 
STANDBYWFI signal after an IRQ interrupt. 

Figure 7-2 Deassertion of STANDBYWFI after an IRQ interrupt

When the processor enters a low-power state, all of the main internal clocks are stopped. 
However, the processor is active if DBGTCKEN is asserted. 

STANDBYWFI

nIRQ

CLK
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7.5 AHB transfer descriptions

The DMA interface performs a subset of the possible AHB bus transfers. This section 
describes the transfers that can be performed. 

7.5.1 DMA reads

Figure 7-3 shows the bus activity for a DMA read from the Instruction TCM (ITCM). 
Because the address and control data have to be registered to meet the TCM setup time, 
a DMA read always has a latency of at least one AHB cycle. 

Figure 7-3 DMA reads of ITCM

7.5.2 DMA read with error response 

Figure 7-4 on page 7-10 shows an example of a DMA read to the ITCM with the ITCM 
generating an error by asserting the ITCMERROR signal. As soon as the DMA 
interface samples the error, it asserts the HRESPD signal on the next valid AHB cycle, 
that is, when HCLKEND is HIGH. This is to indicate to the DMA controller that there 
was an error on the read transaction. An error always requires a two-cycle response. 
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Figure 7-4 DMA read of ITCM with error response

7.5.3 DMA read with wait state

Figure 7-5 on page 7-11 shows a DMA read transaction with a wait state. In the data 
phase, the TCM generates a wait state that the DMA interface then samples. As soon as 
the DMA interface recognizes that the TCM is unable to fulfill the transaction, it forces 
HREADYOUTD LOW to inform the DMA controller to extend the data portion of the 
AHB transfer. 
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Figure 7-5 DMA read of ITCM with wait state

7.5.4 DMA write with wait state 

Figure 7-6 on page 7-12 is similar to Figure 7-5 except that it shows a DMA write 
operation instead of a read. The effect of asserting the D0TCMWAIT or 
D1TCMWAIT signal causes the data phase to be extended. 
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Figure 7-6 DMA write of DTCM with wait state

7.5.5 Interleaved DMA writes to DTCM

Figure 7-7 on page 7-13 shows the interleaved bus activity when the DMA interface is 
writing a block of data to the DTCM. You can see how the D0TCM and D1TCM ports 
use alternate cycles for each word as the transactions progress. 

Note
 The ARM968E-S processor does not support interleaved access of the ITCM. 
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Figure 7-7 Interleaved DMA writes to DTCM
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Chapter 8 
Debug Support

This chapter describes the ARM968E-S debug interface. It contains the following 
sections: 

• About the debug interface on page 8-2 

• Debug systems on page 8-4 

• Debug data chain 15 on page 8-6 

• Debug interface signals on page 8-8 

• ARM9E-S core clock domains on page 8-13 

• Determining the core and system state on page 8-14. 

This chapter also describes the ARM9E-S EmbeddedICE-RT logic in the following 
sections: 

• About the EmbeddedICE-RT on page 8-15 

• Disabling EmbeddedICE-RT on page 8-17 

• The debug comms channel on page 8-18 

• Monitor debug-mode on page 8-22 

• Additional debug reading on page 8-24. 
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8.1 About the debug interface

The ARM968E-S debug interface is based on IEEE Std. 1149.1-1990, Standard Test 
Access Port and Boundary-Scan Architecture. See this standard for an explanation of 
the terms used in this chapter and for a description of the TAP controller states. 

The ARM968E-S processor contains hardware extensions for advanced debugging 
features to facilitate application software and operating system development. 

The debug extensions enable you to force the processor into debug state. Debug state 
effectively stops the ARM968E-S processor and memory system and isolates them 
from the rest of the system. This is known as halt mode operation. It enables you to 
examine the internal state of the processor and the external state of the AHB while all 
other system activity continues as normal. When debug is complete, the processor 
restores the system state and resumes program execution. 

In addition, the processor supports a real-time debug mode that generates an internal 
Instruction Abort or Data Abort instead of a breakpoint or watchpoint. This is known as 
monitor debug-mode operation. 

When using a debug monitor program activated by the Abort exception, you can debug 
the ARM968E-S processor while critical interrupt service routines are executing. The 
debug monitor program typically communicates with the debug host over the debug 
comms channel. See Monitor debug-mode on page 8-22. 

In debug state, you can examine the internal state of the ARM9E-S core by serially 
inserting instructions into the instruction pipeline without using the external data bus. 
For example, you can insert a store multiple (STM) instruction and shift out the contents 
of the ARM9E-S registers without affecting the rest of the system. 

8.1.1 Entering debug state

A request on one of the external debug interface signals or on an internal functional unit 
known as the EmbeddedICE-RT logic forces the ARM9E-S core into debug state. The 
interrupts that activate debug are: 

• a breakpoint (a given instruction fetch) 

• a watchpoint (a data access) 

• an external debug request. 

8.1.2 Clocks

The system and test clocks must be synchronized externally to the processor. The 
Multi-ICE debug agent directly supports one or more cores within an ASIC design. 
Synchronizing off-chip debug clocking with the processor requires a three-stage 
synchronizer. An off-chip device such as Multi-ICE issues a TCK signal and waits for 
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the Returned TCK (RTCK) signal to come back. The off-chip device maintains 
synchronization because it does not progress to the next TCK until after RTCK is 
received. 

Figure 8-1 shows this synchronization. 

Figure 8-1 Clock synchronization
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8.2 Debug systems

The ARM968E-S processor forms one component of a debug system that interfaces 
from the high-level debugging performed by you to the low-level interface supported by 
the processor. Figure 8-2 shows a typical debug system.

Figure 8-2 Typical debug system

A debug system has three parts: 

• Debug host 

• Protocol converter on page 8-5 

• ARM968E-S debug target on page 8-5. 

The debug host and the protocol converter are system-dependent. 

8.2.1 Debug host

The debug host is the computer that runs a software debugger, such as armsd. Through 
the debug host, you can issue high-level commands such as setting breakpoints or 
examining the contents of memory. 

Debug

host

Protocol

converter

Debug

target

Host computer running ARM or third-party toolkit

For example, Multi-ICE

Development system

containing

ARM968E-S processor
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8.2.2 Protocol converter

An interface, such as a parallel port, connects the debug host to the ARM968E-S 
development system. The protocol converter converts the messages broadcast over this 
connection to the interface signals of the ARM968E-S processor. 

8.2.3 ARM968E-S debug target

The ARM968E-S processor has hardware extensions to facilitate debugging at the 
lowest level. The debug extensions enable you to: 

• stall program execution 

• examine the internal state of the core 

• examine the state of the memory system 

• resume program execution. 

The following major blocks of the ARM9E-S debug model are shown in Figure 8-3. 

ARM9E-S core 

This includes hardware support for debug. 

EmbeddedICE-RT logic 

This is a set of registers and comparators used to generate debug 
exceptions such as breakpoints. This unit is described in About the 
EmbeddedICE-RT on page 8-15. 

TAP controller This controls the action of the debug data chains using a JTAG 
serial interface. 

Figure 8-3 Block diagram of the ARM9E-S debug model

ARM9E-S

TAP controller

ARM9E-S

EmbeddedICE-RT

Debug data chainDebug data chain

ARM9E-S
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8.3 Debug data chain 15

Debug data chain 15 enables: 

• debug access to the CP15 register bank 

• configuring the processor state while in debug state. 

The order of debug data chain 15 from the DBGTDI input to the DBGTDO output is 
shown in Table 8-1. 

The CP15 register address field of debug data chain 15 provides debug access to the 
CP15 registers as shown in Table 8-2. 

The scan address decode overloads the existing functional decode logic that accesses 
the CP15 registers during MCR and MRC instructions. See CP15 register descriptions 
on page 4-5. 

The decode overload is performed as follows: 

Bit [37]  This bit corresponds to opcode_1 of an MCR or MRC instruction. 

Bits [36:33] These bits correspond to CRn of an MCR or MRC instruction. 

Bit [32] This bit corresponds to bit 0 of opcode_2 of an MCR or MRC instruction. 

Bits [2:1] Bits [2:1] of opcode_2 are tied to b00 during debug state. 

Debug data chain 15 provides access to only bit 0 of the opcode_2 field by default. 

Table 8-1 Debug data chain 15 bit order

Bits Contents

[38] 1 = write 

0 = read. 

[37:32] CP15 register address 

[31:0] CP15 register value 

Table 8-2 Mapping of debug data chain 15 address field to CP15 registers

Bit [38] Bits [37:32] Bits [31:30] CP15 register number Meaning

b0 b0 0000 0 bxx c0 Read ID register 

b0 b0 0001 0 bxx c1 Read control register 

b1 b0 0001 0 bxx c1 Write control register 
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The ability to control the ARM968E-S system state through debug data chain 15 
provides extra debug visibility. For example, to compare the contents of an address that 
maps to the ITCM or DTCM with the same address in AHB memory, the debugger can: 

1. Load from the address with the TCM enabled to return the TCM data. 

2. Disable the TCM. 

3. Perform the load again. Because the TCM is disabled, the second load accesses 
the AHB and returns the value from AHB memory. 
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8.4 Debug interface signals

There are four primary external signals in the full ARM968E-S debug interface: 

• DBGIEBKPT, DBGDEWPT, and EDBGRQ are system requests for the 
processor to enter debug state 

• DBGACK is used by the processor to flag back to the system that it is in debug 
state. 

8.4.1 Entry into debug state on breakpoint

Any instruction being fetched from memory is sampled at the end of a cycle. To apply 
a breakpoint to an instruction, the breakpoint signal must be asserted by the end of the 
same cycle. This is shown in Figure 8-4 on page 8-9. 

You can build external logic, such as additional breakpoint comparators, to extend the 
breakpoint functionality of the EmbeddedICE-RT logic. These outputs must be applied 
to the DBGIEBKPT input. This signal is ORed with the internally-generated 
breakpoint signal before being applied to the ARM9E-S core control logic. The timing 
of the input makes it unlikely that data-dependent external breakpoints are possible. 

A breakpointed instruction can enter the Execute stage of the pipeline, but any state 
change as a result of the instruction is prevented. All writes from previous instructions 
complete as normal. 

The Decode cycle of the debug entry sequence occurs during the Execute cycle of the 
breakpointed instruction. The latched breakpoint signal forces the processor to start the 
debug sequence. 

Note
 The ARM968E-S processor performs Thumb instruction fetches as 32-bit accesses to 
the AHB or TCM interfaces. As a result, external breakpoint hardware cannot identify 
which halfword has been requested by the ARM9E-S core as an instruction. If an 
external hardware breakpoint detector generates an external breakpoint, it applies to 
both instructions in the 32-bit word fetched from memory. External breakpoints in 
Thumb state must be avoided as program execution might be interrupted 
unintentionally. To ensure precise debug entry, use the Embedded-ICE module within 
the ARM9E-S core. 

Figure 8-4 on page 8-9 shows breakpoint timing.
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Figure 8-4 Breakpoint timing

8.4.2 Breakpoints and exceptions

If a breakpointed instruction has a Prefetch Abort associated with it, the Prefetch Abort 
takes priority, and the breakpoint is ignored. 

SWI and Undefined instructions are treated in the same way as any other instruction that 
might have a breakpoint set on it. Therefore, the breakpoint takes priority over the SWI 
or Undefined instruction. 

If there is a breakpointed instruction on an instruction boundary and an nIRQ or nFIQ 
interrupt, the interrupt is taken and the breakpointed instruction is discarded. When the 
interrupt is being serviced, the execution flow returns to the original program. The 
instruction that was previously breakpointed is fetched again, and if the breakpoint is 
still set, the processor enters debug state when the instruction reaches the Execute stage 
of the pipeline. 

After the processor enters halt mode debug state, it is important that interrupts do not 
affect the instructions executed. Entering halt mode debug state disables interrupts but 
does not affect the state of the I and F bits in the Program Status Register (PSR). 

8.4.3 Watchpoints

Because of the nature of the pipeline, entry into debug state following a watchpointed 
memory access is imprecise. 
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External logic, such as external watchpoint comparators, can extend the functionality of 
the EmbeddedICE-RT logic. Their output must be applied to the DBGDEWPT input. 
This signal is ORed with the internally-generated Watchpoint signal before being 
applied to the ARM9E-S core control logic. The timing of the input makes it unlikely 
that data-dependent external watchpoints are possible. 

After a watchpointed access, the next instruction in the processor pipeline completes its 
execution. When this instruction is a single-cycle data-processing instruction, entry into 
debug state is delayed for one cycle while the instruction completes. The timing of 
debug entry following a watchpointed load in this case is shown in Figure 8-5. 

Figure 8-5 Watchpoint entry with data processing instruction

Note
 Although instruction 5 enters the Execute stage, it is not executed, and there is no state 
update as a result of this instruction. When the debugging session is complete, normal 
continuation involves a return to instruction 5, the next instruction in the code sequence 
to be executed. 
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The instruction following the instruction that generated the watchpoint might have 
modified the Program Counter (PC). If this happens, it is not possible to determine the 
instruction that caused the watchpoint. A timing diagram showing debug entry after a 
watchpoint where the next instruction is a branch is shown in Figure 8-6. However, it is 
always possible to restart the processor. 

When the processor enters debug state, the ARM9E-S core is interrogated to determine 
its state. In the case of a watchpoint, the PC contains a value that is five instructions on 
from the address of the next instruction to be executed. Therefore, if on entry to debug 
state, in ARM state, the instruction SUB PC, PC, #20 is scanned in and the processor 
restarted, execution flow returns to the next instruction in the code sequence. 

Figure 8-6 Watchpoint entry with branch

8.4.4 Watchpoints and exceptions

If the watchpointed data access aborts, the processor: 

• latches the watchpoint condition 

• performs the exception entry sequence 

• enters debug state. 

If there is an interrupt pending, the ARM9E-S core completes the exception entry 
sequence and then enters debug state. 
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8.4.5 Debug request

A debug request can take place through the EmbeddedICE-RT logic or by asserting the 
EDBGRQ signal. The request is synchronized and passed to the processor. Debug 
request takes priority over any pending interrupt. Following synchronization, the core 
enters debug state when the instruction at the Execute stage of the pipeline is completed 
(when Memory and Write stages of the pipeline have completed). While waiting for the 
instruction to finish executing, no more instructions are issued to the Execute stage of 
the pipeline. 

Caution
 Asserting EDBGRQ in monitor debug-mode results in Unpredictable behavior.

8.4.6 Actions of the ARM9E-S core in debug state

When the ARM9E-S core is in debug state, both memory interfaces indicate internal 
cycles. This ensures that both the tightly-coupled memory and the AHB interface are 
quiescent, and that the rest of the AHB system can ignore the ARM9E-S core and 
function as normal. Because the rest of the system continues operation, the core ignores 
aborts and interrupts. 

The HRESETn signal must be held stable during debug. If the system applies Reset to 
the ARM968E-S (HRESETn is driven LOW), the ARM9E-S core changes state 
without the knowledge of the debugger. 
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8.5 ARM9E-S core clock domains

The ARM968E-S processor has a single clock, CLK, that is qualified by two clock 
enables: 

• SYSCLKEN controls access to the memory system 

• DBGTCKEN controls debug operations. 

During normal operation, SYSCLKEN conditions CLK to clock the core. When the 
processor is in debug state, DBGTCKEN conditions CLK to clock the core. 
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8.6 Determining the core and system state

When the ARM968E-S processor is in debug state, you can examine the core and 
system state by forcing the load and store multiples into the instruction pipeline. 

Before you can examine the core and system state, the debugger must determine if the 
processor entered debug from manual state or manual state, by examining bit 4 of the 
EmbeddedICE-RT Debug Status Register. When bit 4 is HIGH, the core entered debug 
from manual state. 
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8.7 About the EmbeddedICE-RT

The EmbeddedICE-RT logic provides integrated on-chip debug support for the 
ARM9E-S core within the ARM968E-S processor.

EmbeddedICE-RT is programmed serially using the ARM9E-S TAP controller. 
Figure 8-7 shows the relationship between the processor, EmbeddedICE-RT, and the 
TAP, showing only the signals that are pertinent to EmbeddedICE-RT. 

Figure 8-7 EmbeddedICE-RT interface

The EmbeddedICE-RT logic contains: 

• two real-time watchpoint units 

• two independent registers, the Debug Control Register and the Debug Status 
Register 

• debug comms channel. 

The Debug Control Register and the Debug Status Register provide overall control of 
EmbeddedICE-RT operation. 

You can program one or both watchpoint units to halt the execution of instructions by 
the core. Execution halts when the values programmed into EmbeddedICE-RT match 
the values currently appearing on the address bus, data bus, and various control signals. 
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Note
 Any bit can be masked so that its value does not affect the comparison. 

Each watchpoint unit can be configured to be either a watchpoint to monitor data 
accesses or a breakpoint to monitor instruction fetches. Watchpoints and breakpoints 
can be data-dependent. 
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8.8 Disabling EmbeddedICE-RT

You can disable EmbeddedICE-RT by pulling the DBGEN input LOW. 

Caution
 Permanently tying the DBGEN input LOW disables debug access. 

Pulling DBGEN LOW disables DBGDEWPT, DBGIEBKPT, and EDBGRQ to the 
processor and forces DBGACK from the processor LOW. 
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8.9 The debug comms channel

The EmbeddedICE-RT logic contains a debug comms channel for passing information 
between the target and the host debugger. The debug comms channel is implemented as 
CoProcessor 14 (CP14). 

8.9.1 Debug comms channel registers

The debug comms channel consists of: 

• a 6-bit Debug Comms Channel Status Register 

• a 32-bit Debug Comms Channel Data Read Register 

• a 32-bit Debug Comms Channel Data Write Register 

• a 1-bit Debug Comms Channel Monitor Debug-Mode Status Register. 

These registers are located in fixed locations in the EmbeddedICE-RT logic register 
map. From the viewpoint of the debugger, the registers are accessed using the debug 
data chain in the usual way. From the viewpoint of the processor, these registers are 
accessed using MCR and MRC instructions to CP14. 

Note
 Because the Thumb instruction set does not contain coprocessor instructions, use SWI 
instructions to access debug comms channel data when in Thumb state. 

Table 8-3 lists the registers of the debug comms channel. 

Debug Comms Channel Status Register

The read-only Debug Comms Channel Status Register is a handshake register between 
the processor and the asynchronous debugger. Use the following instruction to read the 
Comms Channel Status Register: 

MRC p14, 0, <Rd>, c0, 0 ; Read Debug Comms Channel Status Register

Table 8-3 Debug comms channel registers

Register name Access

CP14 c0 Debug Comms Channel Status Register Read-only

CP14 c1 Debug Comms Channel Data Read Register Read-only

CP14 c1 Debug Comms Channel Data Write Register Write-only

CP14 c2 Debug Comms Channel Monitor Debug-Mode Status Register Read/write
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Figure 8-8 shows the bit fields of the Debug Comms Channel Status Register. 

Figure 8-8 Debug Comms Channel Status Register

Table 8-4 lists the bit field definitions of the Debug Comms Channel Status Register. 

Debug Comms Channel Read Data Register

Use the following instruction to read data from the 32-bit read-only Debug Comms 
Channel Data Read Register: 

MRC p14, 0, <Rd>, c1, c0 

Debug Comms Channel Write Data Register

Use the following instruction to write data to the 32-bit write-only Debug Comms 
Channel Data Write Register: 

MCR p14, 0, <Rn>, c1, c0 

RWVersion

31 28 1 0227

SBZ

Table 8-4 Debug Comms Channel Status Register Encoding

Bit Name Definition

[31:28] Version EmbeddedICE-RT version number, b0110. 

[27:2] - Reserved. Should Be Zero. 

[1] W Comms Channel Data Write Register ready flag: 

1 = data ready for scan-out 

0 = channel ready for new data from processor. 

[0] R Comms Channel Data Read Register ready flag: 

1 = data ready for processor to read 

0 = channel ready for new data from debugger. 
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Debug Comms Channel Monitor Debug-Mode Status Register

A debug monitor can use the read/write Debug Comms Channel Monitor Debug-Mode 
Status Register when the ARM968E-S processor is in monitor debug-mode. Use the 
instructions in Table 8-5 to access the Debug Comms Channel Monitor Debug-Mode 
Register: 

Figure 8-9 shows the bit fields of the Debug Comms Channel Monitor Debug-Mode 
Status Register. 

Figure 8-9 Debug Comms Channel Monitor Debug-Mode Status Register

Table 8-6 lists the bit field definitions of the Debug Comms Channel Monitor 
Debug-Mode Status Register. 

If both the debug abort and external abort signals are asserted on an instruction fetch or 
data access, the external abort takes priority, and the DbgAbt bit is not set. 

A real-time debug-aware abort handler can examine bit 0 to determine if the abort is 
externally or internally generated. If the DbgAbt bit is set, the abort handler initiates 
communication with the debugger over the debug comms channel. 

Table 8-5 Debug Comms Channel Monitor Debug-Mode Status Register instructions

Instruction Operation

MRC p14, 0, <Rd>, c2, c0 Read Debug Comms Channel Monitor Mode-Debug Status Register

MCR p14, 0, <Rd>, c2, c0 Write Debug Comms Channel Monitor Mode-Debug Status Register

31 1 0

SBZ

DbgAbt

Table 8-6 Debug Comms Channel Monitor Debug-Mode Status Register Encoding

Bit Name Definition

[0] DbgAbt Debug mode abort bit: 

1 = breakpoint or watchpoint caused Prefetch Abort or Data Abort 

0 = no abort on breakpoint or watchpoint. 

[31:1] - Should Be Zero. 
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8.9.2 Communications using the debug comms channel

Messages can be sent and received using the debug comms channel as described in: 

• Sending a message to the debugger 

• Receiving a message from the debugger. 

Sending a message to the debugger

Before sending a message to the debugger, the processor must first check the W bit in 
the Debug Comms Channel Status Register. 

If the W bit is clear, the Debug Comms Channel Write Data Register is ready for new 
write data. The processor can write to the Debug Comms Channel Write Data Register 
with a register transfer to CP14. The register transfer sets the W bit. 

If the W bit is set, the debugger has not read the previously written data. The processor 
must continue polling the Debug Comms Channel Status Register until the W bit is 
clear. 

The debugger polls the Debug Comms Channel Status Register through the JTAG 
interface. When it detects that the W bit is set, it can read the Debug Comms Channel 
Write Data Register and scan the data out. This action clears the W bit, and the 
processor can send another message to the debugger. 

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a 
message to the debugger. In this case, the debugger must first check the R bit in the 
Debug Comms Channel Status Register. 

If the R bit is clear, the Debug Comms Channel Read Data Register is ready, and the 
debugger can write to the Debug Comms Channel Read Data Register using the JTAG 
interface. The write sets the R bit. 

If the R bit is set, the processor has not read the previously written data. The debugger 
must continue polling the Debug Comms Channel Read Data Register until the R bit is 
clear. 

The processor polls the Debug Comms Channel Status Register. When it detects that the 
R bit is set, it can read the Debug Comms Channel Read Data Register with an MRC 
instruction to CP14. This action clears the R bit, and the debugger can send another 
message to the processor. 
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8.10 Monitor debug-mode

The ARM9E-S core contains logic that enables debugging of a system without stopping 
the core entirely. Critical interrupt routines can continue while the core is being 
interrogated by the debugger. Setting bit 4 of the Debug Control Register enables the 
real-time debug features of the ARM9E-S core. Setting this bit configures the 
EmbeddedICE-RT logic so that a breakpoint or watchpoint causes the processor to enter 
Abort mode, taking the Prefetch Abort or Data Abort vectors respectively. When the 
processor is configured for real-time debugging you must be aware of the following 
restrictions: 

• Breakpoints or watchpoints cannot be data-dependent. Chaining is supported, but 
no support is provided for use of the range functionality. Breakpoints or 
watchpoints can only be based on: 

— instruction or data addresses 

— external watchpoint conditioner (DBGEXTERN) 

— user or privileged mode access (DnTRANS and InTRANS) 

— read or write access (watchpoints) 

— access size (breakpoints, ITBIT, and watchpoints, DMAS[1:0]). 

• The single-step hardware is not enabled. 

• External breakpoints and watchpoints are not supported. 

• The vector catching hardware can be used but must not be configured to catch the 
Prefetch or Data Abort exceptions. 

Caution
 No support is provided to mix halt mode and monitor debug-mode functionality. When 
the core is configured into the monitor debug-mode, asserting the external EDBGRQ 
signal causes Unpredictable behavior. Setting the internal EDBGRQ bit results in 
Unpredictable behavior. 

When an abort is generated by the monitor debug-mode, it is recorded in the Debug 
Status Register in CP14. See Debug Comms Channel Monitor Debug-Mode Status 
Register on page 8-20.

Because the monitor debug-mode does not put the ARM9E-S core into debug state, it 
is necessary to change the contents of the watchpoint registers while TCM accesses are 
taking place, rather than being changed when in debug state. Writing to a watchpoint 
register during an access disables all matches from the watchpoint unit using the register 
for the cycle of the update. 
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If there is a possibility of false matches occurring during changes to the watchpoint 
registers, then you must: 

1. Disable that watchpoint unit using the control register for that watchpoint unit. 

2. Change the other registers. 

3. Re-enable the watchpoint unit by rewriting the control register. 
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8.11 Additional debug reading

See the ARM9E-S Technical Reference Manual, Appendix C Debug in Depth for a full 
description of the ARM9E-S debug features and the JTAG interface. 
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Chapter 9 
Embedded Trace Macrocell Interface

This chapter describes the ARM968E-S Embedded Trace Macrocell (ETM) interface. 
It contains the following sections: 

• About the ETM interface on page 9-2 

• Enabling the ETM interface on page 9-3 

• Trace support features on page 9-4. 
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9.1 About the ETM interface

The full ARM968E-S debug implementation supports the connection of an external 
Embedded Trace Module (ETM) to provide real time code tracing of the processor in an 
embedded system. See the ETM9 Technical Reference Manual for more information. 

The ETM interface is primarily one way. To provide code tracing, the ETM block must 
be able to monitor various ARM9E-S inputs and outputs. The ETM interface drives the 
required ARM9E-S inputs and outputs out from the processor through the ETM 
interface registers, as Figure 9-1 shows. 

Figure 9-1 ETM interface

The pipelined outputs of the ETM interface provide early output timing and isolate any 
ETM input load from the critical processor signals. Because all outputs have the same 
delay, the latency of the pipelined outputs does not affect ETM trace behavior. 
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9.2 Enabling the ETM interface

The top-level pin ETMEN enables the ETM interface. When this input is HIGH, the 
ETM interface drives the outputs so that an external ETM can begin code tracing. 

When the ETMEN input is LOW, the ETM interface outputs remain at their last value 
before the interface was disabled. 

The ETM usually drives the ETMEN input HIGH after the debugger programs the 
ETM using its TAP controller. 

ARM recommends that you connect the ETMEN input to the PWRDOWN output of 
the ETM9 through an inverter as Figure 9-1 on page 9-2 shows. 

Note
 If your design does not include an ETM, tie the ETMEN input LOW to save power. 
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9.3 Trace support features

The trace support uses the following features: 

• FIFOFULL 

• Configuration Control Register 

• Trace Process ID Register. 

9.3.1 FIFOFULL

The ETM9 drives the FIFOFULL input to the processor when the ETM FIFO contents 
reach the programmed upper watermark. The processor uses FIFOFULL to stall the 
ARM9E-S core, preventing trace loss. The core remains stalled until FIFOFULL is 
deasserted. 

The processor can stall only on instruction boundaries, enabling any current AHB 
transfers to complete. You must take this into consideration when programming the 
ETM FIFO watermark. If the current instruction is either LDM or STM, the FIFO might 
have to accept up to 16 words after the assertion of FIFOFULL. 

Note
 Using FIFOFULL to stall the processor affects real-time operating performance. 

9.3.2 Configuration Control Register

The Configuration Control Register enables masking of the nIRQ and nFIQ interrupt 
signals when the ETM FIFO is full. See CP15 c15 Configuration Control Register on 
page 4-11 for a description of this register. 

9.3.3 Trace Process ID Register

The Trace Process ID Register enables real-time trace tools to identify the currently 
executing process in multitasking environments. See CP15 c13 Trace Process ID 
Register on page 4-11 for a description of this register. 
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Test Support

This chapter describes the test methodology employed for the ARM968E-S synthesized 
logic and tightly-coupled memory. It contains the following sections:

• About the ARM968E-S test methodology on page 10-2 

• Scan insertion and ATPG on page 10-3. 
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10.1 About the ARM968E-S test methodology

To achieve a high level of fault coverage, the ARM9E-S core and ARM968E-S control 
logic implement scan insertion and ATPG techniques as part of the synthesis flow. 
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10.2 Scan insertion and ATPG

This technique is covered in detail in the ARM968E-S Implementation Guide. Scan 
insertion requires all register elements to be replaced by scannable versions that are then 
connected into a number of large scan chains. These scan chains are used to set up data 
patterns on the combinatorial logic between the registers and to capture the logic 
outputs. The logic outputs are then scanned out while the next data pattern is scanned in. 

Automated Test Pattern Generation (ATPG) tools are used to create the necessary scan 
patterns to test the logic when the scan insertion has been performed. This technique 
enables very high fault coverage of the standard cell combinatorial logic, typically in 
the 95-99% range. 

Scan insertion does have an impact on the area and performance of the synthesized 
design, because of the larger scan register elements and the serial routing between them. 
To minimize these effects the scan insertion is performed early in the synthesis cycle 
and the design re-optimized with the scan elements in place. 

10.2.1 ARM968E-S test wrapper

A test wrapper can be used to improve test coverage where an ASIC contains a 
black-box macrocell with no internal visibility of the macrocell. For logic to be testable, 
the input to the logic must be controllable using a scan chain and so must be driven by 
a register. The output of the logic must also be observable through a scan chain, and so 
must be registered. 

If the processor is integrated into an ASIC as a black box, the test tools do not have 
visibility of the internal scan chains and cannot create vectors to cover any logic 
between the last register in the ARM968E-S processor and the next register in the ASIC. 
This is known as a test shadow and leads to a reduction in test coverage. 

The test wrapper enables testing of this shadow logic. The test wrapper is a scan chain 
around the periphery of the processor that connects to each input and output. The test 
wrapper scan chain can be used in two modes: 

• INTEST mode 

• EXTEST mode. 

The INTEST wrapper is required only for embedded ARM968E-S processors. In 
INTEST mode, all processor inputs are driven using the test wrapper scan chain, and all 
processor outputs are observable through the test wrapper scan chain. This enables a 
complete set of ATPG vectors to be produced for the processor in isolation. In EXTEST 
mode, all processor inputs are driven using the test wrapper scan chain. All processor 
inputs are observable through the test wrapper scan chain. This enables the logic 
surrounding the processor to be tested without requiring internal visibility of the 
processor. 
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Chapter 11 
DFT Interface

This chapter describes the Design for Test (DFT) interface of the ARM968E-S 
processor. It contains the following section: 

• About the DFT interface on page 11-2.
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11.1 About the DFT interface

The Synopsys Reference Methodology flow contains optional scripts to create test 
wrappers. The Synopsys Methodology Guide in the <technology>/synopsys/docs 
directory contains details of the structure and operation of the test wrappers. 

The ARM968E-S DFT interface has two dedicated DFT signals: 

SE Scan enable. SE disables the TCM chip select to ensure TCM state 
preservation during Automated Test Pattern Generation (ATPG). 
Connect SE to the shift enable of your design. 

WEXTEST Wrapper external test select. WEXTEST prevents unknown states 
during EXTEST by forcing clock gates of shared wrapper cells to always 
be enabled. WEXTEST must be HIGH during EXTEST or LOW during 
INTEST or functional mode. 
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Signal Descriptions

This appendix describes the ARM968E-S signals. It contains the following sections: 

• Signal properties and requirements on page A-2 

• AHB interface signals on page A-3 

• DMA interface signals on page A-5 

• Debug signals on page A-7 

• TCM interface signals on page A-9 

• ETM interface signals on page A-12 

• DFT interface signals on page A-14 

• Miscellaneous interface signals on page A-15. 
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A.1 Signal properties and requirements

For easy integration of the ARM968E-S processor into embedded applications and to 
simplify synthesis flow, the ARM968E-S design uses the following techniques: 

• a single rising edge clock times all activity 

• unidirectional signals and buses 

• inputs that are required to be synchronous to the single clock. 

All outputs change from the rising clock edge, and all input sampling occurs on the 
rising clock edge. These techniques simplify the definition of the top-level ARM968E-S 
signals. In addition, all signals are either input-only or output-only. There are no 
bidirectional signals. 

Note
 Asynchronous signals, such as interrupt sources, must first be synchronized by external 
logic before being applied to the processor. 
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A.2 AHB interface signals

Table A-1 describes the ARM968E-S AHB interface signals.

Table A-1 AHB interface signals

Name Direction Description

HADDR[31:0] Output Address bus. 

HTRANS[1:0] Output Transfer type: 

b00 = idle 

b10 = nonsequential 

b11 = sequential. 

HBURST[2:0] Output BIU burst type: 

b000 = single transfer 

b001 = incrementing transfer of unspecified length 

b011 = 4-beat incrementing burst 

b101 = 8-beat incrementing burst 

b111 = 16-beat incrementing burst. 

HWRITE Output Transfer direction: 

1 = write 

0 = read. 

HSIZE[2:0] Output Transfer size: 

b000 = byte 

b001 = halfword 

b010 = word. 

HPROT[3:0] Output BIU protection control: 

bxxx0 = opcode fetch 

bxxx1 = data access 

bxx0x = User mode access 

bxx1x = Supervisor mode access 

bx0xx = nonbufferable access 

bx1xx = bufferable access 

b0xxx = noncachable access 

b1xxx = cachable access. 

HREADY Input Slave ready. Can be driven LOW to extend transfer. 
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HRESP Input Slave response. Reflects transfer status: 

0 = okay 

1 = error. 

HWDATA[31:0] Output Write data bus. 

HRDATA[31:0] Input Read data bus. 

HMASTLOCK Output Bus locked. Indicates that processor has locked access to AHB bus. 
Asserted when executing SWP instructions to AHB address space. 

HRESETn Input Active-LOW system and bus reset. Asserted asynchronously. 
Deasserted synchronously. 

HCLKEN Input Synchronous HCLK enable. Specifies rising edge of HCLK for 
AHB transfer. If CLK and HCLK have same frequency, tie 
HCLKEN HIGH. 

Table A-1 AHB interface signals (continued)

Name Direction Description
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A.3 DMA interface signals

Table A-2 describes the ARM968E-S DMA interface signals. 

Table A-2 DMA interface signals

Name Direction Description

HSELD Input DMA select: 

1 = DMA selected 

0 = DMA not selected. 

HADDRD[31:0] Input DMA address bus.

HTRANSD[1:0] Input DMA transfer type: 

b00 = idle 

b01 = busy 

b10 = nonsequential 

b11 = sequential. 

HBURSTD[2:0] Input These burst type signals are not implemented and are present 
only for AMBA specification compliance. 

HWRITED Input DMA transfer direction: 

1 = write to DMA

0 = read from DMA. 

HSIZED[2:0] Input DMA transfer size: 

b000 = byte 

b001 = halfword 

b010 = word. 

HPROTD[3:0] Input These protection control signals are not implemented and are 
present only for AMBA specification compliance. 

HREADYIND Input Slave ready input: 

1 = slave transfer complete 

0 = slave transfer in progress

HWDATAD[31:0] Input DMA write data bus. 

HREADYOUTD Output DMA ready output: 

1 = DMA transfer complete 

0 = DMA transfer in progress. 
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HRESPD Output DMA response. Reflects transfer status: 

1 = error 

0 = okay. 

HRDATAD[31:0] Output DMA read data bus. 

HCLKEND Input Clock enable for DMA interface. 

Table A-2 DMA interface signals (continued)

Name Direction Description
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A.4 Debug signals

Table A-3 describes the ARM968E-S debug signals. 

Note
 DBGRNG, DBGIEBKPT, and DBGDEWPT are present only in the full debug 
configuration. 

 

Table A-3 Debug signals

Name Direction Description

COMMRX Output Comms channel receive. HIGH when comms channel receive buffer has data to read.

COMMTX Output Comms channel transmit. HIGH when comms channel transmit buffer is empty.

DBGACK Output Debug acknowledge. HIGH when processor is in debug state.

DBGEN Input Debug enable. HIGH when processor is in debug state. Enables EmbeddedICE 
logic.

DBGRQI Output Internal debug request. Represents the debug request signal that is presented to the 
core debug logic. This is a combination of EDBGRQ and bit 1 of the Debug Control 
Register.

EDBGRQ Input External debug request from external debugger. 

DBGEXT[1:0] Input EmbeddedICE external input. Conditions breakpoints and watchpoints. 

DBGINSTREXEC Output Instruction executed. HIGH when instruction in Execute stage is done.

DBGRNG[1:0] Output Debug rangeout. Indicates that the corresponding EmbeddedICE-RT watchpoint 
register matches the conditions currently present on the address, data and control 
buses. This signal is independent of the state of the watchpoint enable control bit.

DBGIEBKPT Input Instruction breakpoint. Asserted by external hardware to halt execution of the 
processor for debug. If HIGH at the end of an instruction fetch, it causes the 
processor to enter debug state when the instruction reaches the Execute stage. 

DBGDEWPT Input Data watchpoint. Asserted by external hardware to halt execution of the processor 
for debug. If HIGH at the end of a data memory request cycle, it causes the processor 
to enter debug state.

DBGnTRST Input Test reset. Active-LOW reset signal for the EmbeddedICE internal state. Can be 
asserted asynchronously but must be deasserted synchronously. 

DBGTCKEN Input Synchronous test clock enable for debug logic accessed by JTAG interface. When 
HIGH on rising edge of CLK, debug logic is able to advance.
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DBGTDI Input Test data input for debug logic.

DBGTMS Input Test mode select for TAP controller.

DBGTDO Output Test data output from debug logic.

DBGIR[3:0] Output TAP Controller Instruction Register. Reflects current instruction loaded in the TAP 
Controller Control Register. Changes when TAP controller is in UPDATE-IR state. 

DBGSCREG[4:0] Output Scan chain register. Reflects ID number of scan chain currently selected by TAP 
controller. Changes when TAP controller is in UPDATE-DR state.

DBGTAPSM[3:0] Output TAP controller state machine. Reflects current state of TAP controller state machine.

DBGnTDOEN Output Debug output enable. Active-LOW enable indicates that serial data is being driven 
out of DBGTDO output. 

DBGSDIN Output Serial data in. Contains serial data to be applied to an external scan chain.

DBGSDOUT Input Serial data out. Contains serial data out of an external scan chain. Must be LOW 
when no external scan chain is connected. 

TAPID[31:0] Input Boundary scan ID code. Shifts out ID code on DBGTDO when IDCODE instruction 
is entered into TAP controller. 

Table A-3 Debug signals (continued)

Name Direction Description
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A.5 TCM interface signals

This section contains the following ARM968E-S signal descriptions: 

• DTCM0 and DTCM1 interface signals 

• ITCM interface signals on page A-10. 

A.5.1 DTCM0 and DTCM1 interface signals

Table A-4 shows the data ARM968E-S TCM interface signals.

Table A-4 DTCM0 and DTCM1 interface signals

Signal Direction Function

D0TCMADDR[21:3] Output DTCM0 address bus. Addresses up to 4MB. 

D0TCMWD[31:0] Output DTCM0 write data bus. 

D0TCMCS Output DTCM0 chip select. 

D0TCMWE[3:0] Output DTCM0 byte write enable. Each set bit indicates a write to RAM of the 
corresponding byte in D0TCMWD[31:0]. For example: 

b0000 = No write.

b0001 = Byte write of the least significant byte. 

b1000 = Byte write of the most significant byte. 

b0011 = A half-word write of the least significant two bytes. 

D0TCMWE[3:0] bits are set only when a write is taking place, so when 
D0TCMnRW is not set, D0TCMWE[3:0] = b0000. 

D0TCMnRW Output DTCM0 read/write:

1 = write access 

0 = read access. 

D0TCMRD[31:0] Input DTCM0 read data. 

D0TCMWAIT Input DTCM0 wait. If HIGH, ITCM cannot service any requests in next cycle. Stall the 
processor for multiple-cycle-access RAM on DTCM0 interface. Used to stall the 
processor for DMA access to single-port DTCM0. 

D0TCMERROR Input DTCM0 error signal. Enables the processor to read error conditions during read 
accesses. 

D1TCMADDR[21:3] Output DTCM1 address. Addresses up to 4MB. 

D1TCMWD[31:0] Output DTCM1 write data. 

D1TCMCS Output DTCM1 chip select. 
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A.5.2 ITCM interface signals

Table A-5 on page A-11 shows the ARM968E-S ITCM interface signals.

D1TCMWE[3:0] Output DTCM1 byte write enable. Each bit indicates a write to RAM of the 
corresponding byte in D1TCMWD[31:0]. For example: 

b0000 = No write. 

b0001 = Byte write of the least significant byte. 

b1000 = Byte write of the most significant byte. 

b0011 = A half-word write of the least significant two bytes. 

D1TCMWE[3:0] bits are set only when a write is taking place, so when 
D1TCMnRW is not set, D1TCMWE[3:0] = b0000. 

D1TCMnRW Output DTCM1 read/write: 

1 = write access 

0 = read access. 

D1TCMRD[31:0] Input DTCM1 read data. 

D1TCMWAIT Input DTCM1 wait. If HIGH, ITCM cannot service any requests in next cycle. Stall the 
processor for multiple-cycle-access RAM on DTCM1 interface. Used to stall the 
processor for DMA access to single-port DTCM1. 

D1TCMERROR Input DTCM1 error signal. Enables the processor to read error conditions during read 
accesses. 

DTCMSIZE[4:0] Input DTCM0 and DTCM1 size: 

b00000 = 0B

b00001 = 1KB 

b00010 = 2KB 

b00011 = 4KB

b00100 = 8KB

b00101 = 16KB

b00110 = 32KB

b00111 = 64KB

b01000 = 128KB

b01001 = 256KB

b01010 = 512KB

b01011 = 1MB

b01100 = 2MB

b01101 = 4MB. 

The supported sizes are 0 and 2nKB for n = 0-12. 

Table A-4 DTCM0 and DTCM1 interface signals (continued)

Signal Direction Function
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Table A-5 ITCM interface signals

Signal Direction Function

ITCMADDR[21:2] Output ITCM address. Addresses up to 4MB. Output delay 90% of clock cycle.

ITCMWD[31:0] Output ITCM write data. 

ITCMCS Output ITCM chip select. 

ITCMWE[3:0] Output ITCM byte write enable. Each bit indicates a write to RAM of the corresponding 
byte in ITCMWD[31:0]. For example: 

b0000 = No write. 

b0001 = Byte write of the least significant byte. 

b1000 = Byte write of the most significant byte. 

b0011 = A half-word write of the least significant two bytes. 

ITCMWE[3:0] bits are set only when a write is taking place, so when ITCMnRW 
is not set, ITCMWE[3:0] = b0000.

ITCMnRW Output ITCM read/write: 

1 = write access 

0 = read access. 

ITCMRD[31:0] Input Instruction TCM read data. 

ITCMWAIT Input ITCM wait. If HIGH, ITCM cannot service any requests in next cycle. Stall the 
processor for multiple-cycle-access RAM on ITCM interface. Used to stall the 
processor for DMA access to single-port ITCM. 

ITCMSIZE[4:0] Input ITCM size: 

b00000 = 0B

b00001 = 1KB 

b00010 = 2KB 

b00011 = 4KB

b00100 = 8KB

b00101 = 16KB

b00110 = 32KB

b00111 = 64KB

b01000 = 128KB

b01001 = 256KB

b01010 = 512KB

b01011 = 1MB

b01100 = 2MB

b01101 = 4MB. 

The supported sizes are 0 and 2nKB for n = 0-12. 

ITCMERROR Input ITCM error signal. Enables the processor to read error conditions during read 
accesses. 
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A.6 ETM interface signals

Table A-6 describes the ARM968E-S ETM interface signals.

Note
 ETM interface signals are present only in the full debug configuration.

 

Table A-6 ETM interface signals

Name Direction Description

ETMBIGEND Output Big-endian configuration indication. 

ETMHIVECS Output Exception vectors configuration. 

ETMnWAIT Output Processor stalled indication. 

ETMIA[31:1] Output Instruction address. 

ETMInMREQ Output Instruction memory request. 

ETMISEQ Output Sequential instruction access. 

ETMITBIT Output Thumb state indication. 

ETMID31To25[31:25] Output Instruction data field. 

ETMID15To11[15:11] Output Instruction data field. 

ETMDA[31:0] Output Data address. 

ETMWDATA[31:0] Output Write data. 

ETMDMAS[1:0] Output Data size indication. 

ETMDnMREQ Output Data memory request. 

ETMDnRW Output Data not read or write. 

ETMDSEQ Output Sequential data indication. 

ETMRDATA[31:0] Output Read data. 

ETMDABORT Output Data Abort. 

ETMCHSD[1:0] Output Coprocessor handshake decode signals. 

ETMCHSE[1:0] Output Coprocessor handshake execute signals. 

ETMLATECANCEL Output Coprocessor late cancel indication. 
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ETMPASS Output Coprocessor instruction execute indication. 

ETMDBGACK Output Debug state indication. 

ETMINSTREXEC Output Instruction execute indication. 

ETMINSTRVALID Output Instruction valid indication. 

ETMRNGOUT[1:0] Output Watchpoint register match indication. 

ETMPROCID[31:0] Output Process ID. 

ETMPROCIDWR Output Asserted when ETMPROCID is written. 

ETMEN Input Synchronous ETM interface enable. Must be LOW if 
ETM is not used.

FIFOFULL Input Asserted when ETM FIFO fills. Must be LOW if 
ETM is not used.

Table A-6 ETM interface signals (continued)

Name Direction Description
ARM DDI 0311D Copyright © 2004, 2006 ARM Limited. All rights reserved. A-13



Signal Descriptions 
A.7 DFT interface signals

Table A-7 describes the ARM968E-S DFT signals. 

Table A-7 DFT signals

Name Direction Description

SE Input Scan enable. HIGH = shift. Must be tied LOW during functional operation. 

WEXTEST Input Wrapper EXTEST select. If the optional test wrapper exists, WEXTEST selects the test 
path from the wrapper: 

1 = EXTEST mode 

0 = INTEST mode or functional mode. 

WEXTEST also ensures that the wrapper clock gates are active during test mode. Must be 
tied LOW during functional operation.
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A.8 Miscellaneous interface signals

Table A-8 describes the ARM968E-S interface signals not included in the other tables 
in this chapter. 

Table A-8 Miscellaneous interface signals

Name Direction Description

CLK Input System clock. Times all processor operations. All outputs change 
on rising edge. All inputs sampled on rising edge. CLK can be 
stretched in either phase. 

nFIQ Input LOW-active fast interrupt request: 

0 = fast interrupt request 

1 = no fast interrupt request. 

nFIQ must be synchronous with CLK. 

nIRQ Input LOW-active Interrupt request: 

0 = interrupt request 

1 = no interrupt request. 

nIRQ must be synchronous with CLK. 

VINITHI Input High exception vector address select: 

1 = vector addresses start at 0xFFFF0000 

0 = vector addresses start at 0x00000000. 

The state of VINITHI at Reset determines vector locations. 

INITRAM Input TCM enable: 

1 = TCMs enabled 

0 = TCMs disabled. 

The state of INITRAM at Reset enables or disables TCMs. 

BIGENDOUT Output Big-endian select: 

1 = memory mapped as big-endian 

0 = memory mapped as little-endian. 

STANDBYWFI Output Wait-for-interrupt flag: 

1 = processor in wait-for-interrupt mode 

0 = processor in normal operating mode. 
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AC Parameters

This appendix describes the AC timing parameters for the ARM968E-S processor. It 
contains the following sections: 

• About AC timing parameters on page B-2 

• CLK, HCLKEN, and HRESETn timing parameters on page B-3

• AHB bus master timing parameters on page B-4 

• DMA interface timing parameters on page B-6 

• Debug interface timing parameters on page B-8 

• JTAG interface timing parameters on page B-10 

• Configuration and exception timing parameters on page B-12 

• INTEST wrapper timing parameters on page B-13 

• ETM interface timing parameters on page B-14 

• TCM interface timing parameters on page B-16. 
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B.1 About AC timing parameters

All figures are expressed as percentages of the CLK period at maximum operating 
frequency. 

The figures quoted are relative to the rising clock edge after the clock skew for internal 
buffering has been added. Inputs given a 0% hold figure therefore require a positive hold 
relative to the top-level clock input. The amount of hold required is equivalent to the 
internal clock skew. 
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B.2 CLK, HCLKEN, and HRESETn timing parameters

Figure B-1 shows the setup time and hold time parameters of the HCLKEN and 
HRESETn signals. 

Figure B-1 CLK, HCLKEN, and HRESETn timing parameters

Table B-1 describes the timing parameters shown in Figure B-1.
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Table B-1 CLK, HCLKEN, and HRESETn timing parameters

Symbol Parameter Min Max

Tcyc CLK cycle time 100% -

Tishen HCLKEN input setup time to rising CLK 85% -

Tihhen HCLKEN input hold time from rising CLK - 0%

Tisrst HRESETn deassertion input setup time to rising CLK 90% -

Tihrst HRESETn deassertion input hold time from rising CLK - 0%
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B.3 AHB bus master timing parameters

Figure B-2 shows the AHB bus master timing parameters. 

Figure B-2 AHB bus master timing parameters

Table B-2 describes the timing parameters shown in Figure B-2. 
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Table B-2 AHB bus master timing parameters

Symbol Parameter Min Max

Tovtr Rising CLK to HTRANS[1:0] valid - 30%

Tohtr HTRANS[1:0] hold time from rising CLK >0% -

Tova Rising CLK to HADDR[31:0] valid - 30%

Toha HADDR[31:0] hold time from rising CLK >0% -

Tovctl Rising CLK to AHB control signals valid - 30%

Tohctl AHB control signals hold time from rising CLK >0% -
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Tovwd Rising CLK to HWDATA[31:0] valid - 30%

Tohwd HWDATA[31:0] hold time from rising CLK >0% -

Tisrdy HREADY input setup time to rising CLK 40% -

Tihrdy HREADY input hold time from rising CLK - 0%

Tisrsp HRESP input setup time to rising CLK 40% -

Tihrsp HRESP input hold time from rising CLK - 0%

Tisrd HRDATA[31:0] input setup time to rising CLK 30% -

Tihrd HRDATA[31:0] input hold time from rising CLK - 0%

Table B-2 AHB bus master timing parameters (continued)

Symbol Parameter Min Max
ARM DDI 0311D Copyright © 2004, 2006 ARM Limited. All rights reserved. B-5



AC Parameters 
B.4 DMA interface timing parameters

Figure B-3 shows the DMA interface timing parameters.

Figure B-3 DMA interface timing parameters

Table B-3 on page B-7 describes the timing parameters shown in Figure B-3. 
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Table B-3 DMA interface timing parameters

Symbol Parameter Min Max

Tissel HSELD setup time before CLK 50% -

Tihsel HSELD hold time after CLK - 0%

Tistr HTRANSD[1:0] setup time before CLK 50% -

Tihtr HTRANSD[1:0] hold time after CLK - 0%

Tisa HADDRD[31:0] setup time before CLK 50% -

Tiha HADDRD[31:0] hold time after CLK - 0%

Tisctl HWRITED, HSIZE[2:0], and HBURSTD[2:0] setup time before CLK 50% -

Tihctl HWRITED, HSIZE[2:0], and HBURSTD[2:0] hold time after CLK - 0%

Tiswd HWDATAD[31:0] setup time before CLK 50% -

Tihwd HWDATAD[31:0] hold time after CLK - 0%

Tisrdy HREADYIND setup time before CLK 50% -

Tihrdy HREADYIND hold time after CLK - 0%

Tovrdy Rising CLK to HREADYOUTD valid 30% -

Tohrdy HREADYOUTD hold time from rising CLK >0% -

Tovrsp Rising CLK to HRESPD valid 30% -

Tohrsp HRESPD hold time from rising CLK >0% -

Tovrd Rising CLK to HRDATAD[31:0] valid 30% -

Tohrd HRDATAD[31:0] hold time from rising CLK >0% -
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B.5 Debug interface timing parameters

Figure B-4 shows the debug interface timing parameters.

Figure B-4 Debug interface timing parameters

Table B-4 on page B-9 describes the timing parameters shown in Figure B-4. 
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Table B-4 Debug interface timing parameters

Symbol Parameter Min Max

Tovdbgack Rising CLK to DBGACK valid - 60%

Tohdbgack DBGACK hold time from rising CLK >0% -

Tovdbgrng Rising CLK to DBGRNG[1:0] valid - 80%

Tohdbgrng DBGRNG[1:0] hold time from rising CLK >0% -

Tovdbgrqi Rising CLK to DBGRQI valid - 45%

Tohdbgrqi DBGRQI hold time from rising CLK >0% -

Tovdbgstat Rising CLK to DBGINSTREXEC valid - 45%

Tohdbgstat DBGINSTREXEC hold time from rising CLK >0% -

Tovdbgcomm Rising CLK to communications channel outputs valid - 60%

Tohdbgcomm Communications channel outputs hold time from rising CLK >0% -

Tisdbgen DBGEN input setup time to rising CLK 35% -

Tihdbgen DBGEN input hold time from rising CLK - 0%

Tisedbgrq EDBGRQ input setup hold time to rising CLK 30% -

Tihedbgrq EDBGRQ input hold time from rising CLK - 0%

Tisdbgext DBGEXT input setup time to rising CLK 20%

Tihdbgext DBGEXT input hold time from rising CLK - 0%

Tisiebkpt DBGIEBKPT input setup time to rising CLK 50% -

Tihiebkpt DBGIEBKPT input hold time from rising CLK - 0%

Tisdewpt DBGDEWPT input setup time to rising CLK 50% -

Tihdewpt DBGDEWPT input hold time from rising CLK - 0%
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B.6 JTAG interface timing parameters

Figure B-5 shows the JTAG interface timing parameters. 

Figure B-5 JTAG interface timing parameters
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Table B-5 describes the timing parameters shown in Figure B-5 on page B-10. 

Table B-5 JTAG interface timing parameters

Symbol Parameter Min Max

Tovdbgir Rising CLK to DBGIR valid - 25%

Tohdbgir DBGIR hold time from rising CLK >0% -

Tovdbgscreg Rising CLK to DBGSCREG valid - 30%

Tohdbgscreg DBGSCREG hold time from rising CLK >0% -

Tovdbgtapsm Rising CLK to DBGTAPSM valid - 30%

Tohdbgtapsm DBGTAPSM hold time from rising CLK >0% -

Tovtdoen Rising CLK to DBGnTDOEN valid - 40%

Tohtdoen DBGnTDOEN hold time from rising CLK >0% -

Tovsdin Rising CLK to DBGSDIN valid - 25%

Tohsdin DBGSDIN hold time from rising CLK >0% -

Tovtdo Rising CLK to DBGTDO valid - 65%

Tohtdo DBGTDO hold time from rising CLK >0% -

Tisntrst DBGnTRST deasserted input setup time to rising CLK 25% -

Tihntrst DBGnTRST input hold time from rising CLK - 0%

Tistdi TAP state control input setup time to rising CLK 30% -

Tihtdi TAP state control input hold time from rising CLK - 0%

Tistcken DBGTCKEN input setup time to rising CLK 50% -

Tihtcken DBGTCKEN input hold time from rising CLK - 0%

Tistapid TAPID[31:0] input setup time to rising CLK 35% -

Tihtapid TAPID[31:0] input hold time from rising CLK - 0%
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B.7 Configuration and exception timing parameters

Figure B-6 shows the configuration and exception timing parameters. 

Figure B-6 Configuration and exception timing parameters

Table B-6 describes the timing parameters shown in Figure B-6. 

The VINITHI and INITRAM pins are specified as 95% of the cycle because they are 
for input configuration during reset and can be considered static. 
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Table B-6 Configuration and exception timing parameters

Symbol Parameter Min Max

Tovbigend Rising CLK to BIGENDOUT valid - 30%

Tohbigend BIGENDOUT hold time from rising CLK >0% -

Tisint Interrupt input setup time to rising CLK 30% -

Tihint Interrupt input hold time from rising CLK - 0%

Tishivecs VINITHI input setup time to rising CLK 90% -

Tihhivecs VINITHI input hold time from rising CLK - 0%

Tisinitram INITRAM input setup time to rising CLK 95% -

Tihinitram INITRAM input hold time from rising CLK - 0%
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B.8 INTEST wrapper timing parameters

Figure B-7 shows the INTEST wrapper timing parameters. The INTEST wrapper 
inputs and outputs are specified as 95% of the cycle because they are production test 
related and expected to operate at typically 50% of the functional clock rate. 

Figure B-7 INTEST wrapper timing parameters

Table B-7 describes the timing parameters shown in Figure B-7. 
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Table B-7 INTEST wrapper timing parameters

Symbol Parameter Min Max

Tovso Rising CLK to SO valid - 30%

Tohso SO hold time from rising CLK >0% -

Tissi SI input setup time to rising CLK 95% -

Tihsi SI input hold time from rising CLK - 0%

Tisscanen SCANEN input setup time to rising CLK 95% -

Tihscanen SCANEN input hold time from rising CLK - 0%

Tistestmux Test mux input setup time to rising CLK 95% -

Tihtestmux Test mux input hold time from rising CLK - 0%
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B.9 ETM interface timing parameters

Figure B-8 shows the ETM interface timing parameters. 

Figure B-8 ETM interface timing parameters
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ETMDBGACK,

ETMRNGOUT[1:0]

ETMBIGEND, ETMHIVECS,

ETMPROCID, ETMPROCIDWR

ETMEN

CLK

T
ohetmdctl

T
ovetmdctl

T
ohetmcpif

T
ovetmcpif

T
ohetmdbg

T
ovetmdbg

T
ohetmcfg

T
ovetmcfg

T
isetmen

T
ihetmen

T
isfifofull

T
ihfifofull

FIFOFULL
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Table B-8 describes the timing parameters shown in Figure B-8 on page B-14. 

Table B-8 ETM interface timing parameters

Symbol Parameter Min Max

Tovetminst Rising CLK to ETM instruction interface valid - 30%

Tohetminst ETM instruction interface hold time from rising CLK >0% -

Tovetmictl Rising CLK to ETM instruction control valid - 30%

Tohetmictl ETM instruction control hold time from rising CLK >0% -

Tovetmstat Rising CLK to ETMINSTREXEC valid - 30%

Tohetmstat ETMINSTREXEC hold time from rising CLK >0% -

Tovetmdata Rising CLK to ETM data interface valid - 30%

Tohetmdata ETM data interface hold time from rising CLK >0% -

Tovetmnwait Rising CLK to ETMnWAIT valid - 30%

Tohetmnwait ETMnWAIT hold time from rising CLK >0% -

Tovetmdctl Rising CLK to ETM data control valid - 30%

Tohetmdctl ETM data control hold time from rising CLK >0% -

Tovetmcfg Rising CLK to ETM configuration valid - 30%

Tohetmcfg ETM configuration hold time from rising CLK >0% -

Tovetmcpif Rising CLK to ETM coprocessor signals valid - 30%

Tohetmcpif ETM coprocessor signals hold time from rising CLK >0% -

Tovetmdbg Rising CLK to ETM debug signals valid - 30%

Tohetmdbg ETM debug signals hold time from rising CLK >0% -

Tisetmen ETMEN input setup time to rising CLK 50% -

Tihetmen ETMEN input hold time from rising CLK - 0%

Tisfifofull FIFOFULL input setup time to rising CLK 50% -

Tihfifofull FIFOFULL input hold time from rising CLK - 0%
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B.10 TCM interface timing parameters

Figure B-9 shows TCM interface timing parameters. 

Figure B-9 TCM interface timing parameters

Table B-9 describes the timing parameters shown in Figure B-9. 

T
ovtcma

T
ohtcma

ITCMADDR

DTCMADDR

CLK

ITCMDWE

DTCMDWE

ITCMCS,

D0TCMCS, D1TCMCS
T

ovtcmctl
T

ohtcmctl

T
ohtcmwe

T
ovtcmwe

T
ohtcmdata

T
ovtcmdata

ITCMWDATA

DTCMWDATA

ITCMWAIT

DTCMWAIT

ITCMRD

ITCMERROR

DTCMERROR

T
istcmrd

T
ihtcmrd

T
istcmerr

T
ihtcmerr

T
istcmwait

T
ihtcmwait

Table B-9 TCM interface timing parameters

Symbol Parameter Min Max

Tovtcma Rising CLK to TCMADDR valid - 85%

Tohtcma TCMADDR hold time from rising CLK >0% -

Tovtcmctl Rising CLK to TCM data control valid - 85%

Tohtcmctl TCM data control valid hold time from rising CLK >0% -

Tovtcmwe Rising CLK to TCM write enable valid - 85%

Tohtcmwe TCM write enable hold time from rising CLK >0% -
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Tovtcmdata Rising CLK to TCM write data valid - 50%

Tohtcmdata TCM write data hold time from rising CLK >0% -

Tistcmwait TCMWAIT input setup time to rising CLK 15% -

Tihtcmwait TCMWAIT input hold time from rising CLK - 0%

Tistcmrd TCM read data input setup time to rising CLK 40% -

Tihtcmrd TCM read data input hold time from rising CLK - 0%

Tistcmerr TCMERROR input setup time to rising CLK 40% -

Tihtcmerr TCMERROR input hold time from rising CLK - 0%

Table B-9 TCM interface timing parameters (continued)

Symbol Parameter Min Max
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Glossary

This glossary describes some of the terms used in ARM manuals. Where terms can have 
several meanings, the meaning presented here is intended.

Abort A mechanism that indicates to a core that it must halt execution of an attempted illegal 
memory access. An abort can be caused by the external or internal memory system as a 
result of attempting to access invalid instruction or data memory. An abort is classified 
as either a Prefetch or Data Abort, and an internal or External Abort. 

See also Data Abort, External Abort and Prefetch Abort.

Addressing modes A mechanism, shared by many different instructions, for generating values used by the 
instructions. For four of the ARM addressing modes, the values generated are memory 
addresses (which is the traditional role of an addressing mode). A fifth addressing mode 
generates values to be used as operands by data-processing instructions.

Advanced High-performance Bus (AHB)
The AMBA Advanced High-performance Bus system connects embedded processors 
such as an ARM core to high-performance peripherals, DMA controllers, on-chip 
memory, and interfaces. It is a high-speed, high-bandwidth bus that supports 
multi-master bus management to maximize system performance. 

See also Advanced Microcontroller Bus Architecture and AHB-Lite.
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Advanced Microcontroller Bus Architecture (AMBA)
AMBA is the ARM open standard for multi-master on-chip buses, capable of running 
with multiple masters and slaves. It is an on-chip bus specification that details a strategy 
for the interconnection and management of functional blocks that make up a 
System-on-Chip (SoC). It aids in the development of embedded processors with one or 
more CPUs or signal processors and multiple peripherals. AMBA complements a 
reusable design methodology by defining a common backbone for SoC modules. AHB 
conforms to this standard.

Advanced Peripheral Bus (APB)
The AMBA Advanced Peripheral Bus is a simpler bus protocol than AHB. It is designed 
for use with ancillary or general-purpose peripherals such as timers, interrupt 
controllers, UARTs, and I/O ports. Connection to the main system bus is through a 
system-to-peripheral bus bridge that helps to reduce system power consumption. 

See also Advanced High-performance Bus.

AHB See Advanced High-performance Bus.

AHB-AP See AHB Access Port.

AHB-Lite AHB-Lite is a subset of the full AHB specification. It is intended for use in designs 
where only a single AHB master is used. This can be a simple single AHB master 
system or a multi-layer AHB system where there is only one AHB master on a layer.

Aligned Aligned data items are stored so that their address is divisible by the highest power of 
two that divides their size. Aligned words and halfwords have addresses that are 
divisible by four and two respectively. The terms word-aligned and halfword-aligned 
therefore stipulate addresses that are divisible by four and two respectively. Other 
related terms are defined similarly.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

Application Specific Integrated Circuit (ASIC)
An integrated circuit that has been designed to perform a specific application function. 
It can be custom-built or mass-produced.

Architecture The organization of hardware and/or software that characterizes a processor and its 
attached components, and enables devices with similar characteristics to be grouped 
together when describing their behavior, for example, Harvard architecture, instruction 
set architecture, ARMv6 architecture.

ARM instruction A word that specifies an operation for an ARM processor to perform. ARM instructions 
must be word-aligned.
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ARM state A processor that is executing ARM (32-bit) word-aligned instructions is operating in 
ARM state.

ASIC See  Application Specific Integrated Circuit.

ATPG See Automatic Test Pattern Generation.

Automatic Test Pattern Generation (ATPG)
The process of automatically generating manufacturing test vectors for an ASIC design, 
using a specialized software tool.

Banked registers Those physical registers whose use is defined by the current processor mode. The 
banked registers are r8 to r14.

Base register write-back
Updating the contents of the base register used in an instruction target address 
calculation so that the modified address is changed to the next higher or lower 
sequential address in memory. This means that it is not necessary to fetch the target 
address for successive instruction transfers and enables faster burst accesses to 
sequential memory. 

Beat Alternative word for an individual transfer within a burst. For example, an INCR4 burst 
comprises four beats.

See also Burst.

Big-endian Byte ordering scheme in which bytes of decreasing significance in a data word are 
stored at increasing addresses in memory.

See also Little-endian and Endianness.

Big-endian memory Memory in which:

• a byte or halfword at a word-aligned address is the most significant byte or 
halfword within the word at that address

• a byte at a halfword-aligned address is the most significant byte within the 
halfword at that address.

See also Little-endian memory.

Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implement 
boundary scan technology using a standard JTAG TAP interface. Each device contains 
at least one TAP controller containing shift registers that form the chain connected 
between TDI and TDO, through which test data is shifted. Processors can contain 
several shift registers to enable you to access selected parts of the device.
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Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which 
program execution is to be halted. Breakpoints are inserted by the programmer to enable 
inspection of register contents, memory locations, variable values at fixed points in the 
program execution to test that the program is operating correctly. Breakpoints are 
removed after the program is successfully tested. 

See also Watchpoint.

Burst A group of transfers to consecutive addresses. Because the addresses are consecutive, 
there is no requirement to supply an address for any of the transfers after the first one. 
This increases the speed at which the group of transfers can occur. Bursts over AHB 
buses are controlled using the HBURST signals to specify if transfers are single, 
four-beat, eight-beat, or 16-beat bursts, and to specify how the addresses are 
incremented.

See also Beat.

Byte An 8-bit data item.

Clock gating Gating a clock signal for a macrocell with a control signal and using the modified clock 
that results to control the operating state of the macrocell.

Cold reset Also known as power-on reset. Starting the processor by turning power on. Turning 
power off and then back on again clears main memory and many internal settings. Some 
program failures can lock up the processor and require a cold reset to enable the system 
to be used again. In other cases, only a warm reset is required. 

See also Warm reset.

Communications channel
The hardware used for communicating between the software running on the processor, 
and an external host, using the debug interface. When this communication is for debug 
purposes, it is called the Debug Comms Channel. In an ARMv6 compliant core, the 
communications channel includes the Data Transfer Register, some bits of the Data 
Status and Control Register, and the external debug interface controller, such as the 
DBGTAP controller in the case of the JTAG interface.

Condition field A four-bit field in an instruction that specifies a condition under which the instruction 
can execute.

Conditional execution
If the condition code flags indicate that the corresponding condition is true when the 
instruction starts executing, it executes normally. Otherwise, the instruction does 
nothing.
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Control bits The bottom eight bits of a Program Status Register (PSR). The control bits change when 
an exception arises and can be altered by software only when the processor is in a 
privileged mode.

Coprocessor A processor that supplements the main processor. It carries out additional functions that 
the main processor cannot perform. Usually used for floating-point math calculations, 
signal processing, or memory management.

Core A core is that part of a processor that contains the ALU, the datapath, the 
general-purpose registers, the Program Counter, and the instruction decode and control 
circuitry.

Core reset See Warm reset.

CPSR See Current Program Status Register

Current Program Status Register (CPSR)
The register that holds the current operating processor status.

Data Abort An indication from a memory system to a core that it must halt execution of an 
attempted illegal memory access. A Data Abort is attempting to access invalid data 
memory. 

See also Abort, External Abort, and Prefetch Abort.

DBGTAP See Debug Test Access Port.

Debugger A debugging system that includes a program, used to detect, locate, and correct software 
faults, together with custom hardware that supports software debugging.

Debug Test Access Port (DBGTAP)
The collection of four mandatory and one optional terminals that form the input/output 
and control interface to a JTAG boundary-scan architecture. The mandatory terminals 
are DBGTDI, DBGTDO, DBGTMS, and TCK. The optional terminal is TRST. This 
signal is mandatory in ARM cores because it is used to reset the debug logic.

Direct Memory Access (DMA)
An operation that accesses main memory directly, without the processor performing any 
accesses to the data concerned.

DMA See Direct Memory Access.

DNM See Do Not Modify.

Do Not Modify (DNM)
In Do Not Modify fields, the value must not be altered by software. DNM fields read as 
Unpredictable values, and must only be written with the same value read from the same 
field on the same processor. 
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DNM fields are sometimes followed by RAZ or RAO in parentheses to show which way 
the bits should read for future compatibility, but programmers must not rely on this 
behavior.

Doubleword A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise 
stated.

Doubleword-aligned
A data item having a memory address that is divisible by eight.

DSM See Design Simulation Model.

EmbeddedICE logic An on-chip logic block that provides TAP-based debug support for ARM processor 
cores. It is accessed through the TAP controller on the ARM core using the JTAG 
interface.

EmbeddedICE-RT The JTAG-based hardware provided by debuggable ARM processors to aid debugging 
in real-time.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor core, outputs instruction and 
data trace information on a trace port. The ETM provides processor driven trace through 
a trace port compliant to the ATB protocol.

Endianness Byte ordering. The scheme that determines the order in which successive bytes of a data 
word are stored in memory. An aspect of the system’s memory mapping.

See also Little-endian and Big-endian

ETM See Embedded Trace Macrocell.

Exception A fault or error event that is considered serious enough to require that program 
execution is interrupted. Examples include attempting to perform an invalid memory 
access, external interrupts, and undefined instructions. When an exception occurs, 
normal program flow is interrupted and execution is resumed at the corresponding 
exception vector. This contains the first instruction of the interrupt handler to deal with 
the exception.

Exceptional state When a potentially exceptional instruction is issued, the VFP11 coprocessor sets the EX 
bit, FPEXC[31], and loads a copy of the potentially exceptional instruction in the 
FPINST register. If the instruction is a short vector operation, the register fields in 
FPINST are altered to point to the potentially exceptional iteration. When in the 
exceptional state, the issue of a trigger instruction to the VFP11 coprocessor causes a 
bounce.

See also  Bounce, Potentially exceptional instruction, and Trigger instruction.
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Exception service routine
See Interrupt handler.

Exception vector See Interrupt vector.

Exponent The component of a floating-point number that normally signifies the integer power to 
which two is raised in determining the value of the represented number. 

External Abort An indication from an external memory system to a core that it must halt execution of 
an attempted illegal memory access. An External Abort is caused by the external 
memory system as a result of attempting to access invalid memory.

See also Abort, Data Abort and Prefetch Abort.

Halfword A 16-bit data item.

Halt mode One of two mutually exclusive debug modes. In halt mode all processor execution halts 
when a breakpoint or watchpoint is encountered. All processor state, coprocessor state, 
memory and input/output locations can be examined and altered by the JTAG interface. 

See also Monitor debug-mode.

High vectors Alternative locations for exception vectors. The high vector address range is near the 
top of the address space, rather than at the bottom.

IMB See Instruction Memory Barrier.

Index register A register specified in some load or store instructions. The value of this register is used 
as an offset to be added to or subtracted from the base register value to form the virtual 
address, which is sent to memory. Some addressing modes optionally enable the index 
register value to be shifted prior to the addition or subtraction.

Instruction cycle count
The number of cycles for which an instruction occupies the Execute stage of the 
pipeline.

Instruction Memory Barrier (IMB)
An operation to ensure that the prefetch buffer is flushed of all out-of-date instructions.

Internal scan chain A series of registers connected together to form a path through a device, used during 
production testing to import test patterns into internal nodes of the device and export the 
resulting values.

Interrupt handler A program that control of the processor is passed to when an interrupt occurs. 

Interrupt vector One of a number of fixed addresses in low memory, or in high memory if high vectors 
are configured, that contains the first instruction of the corresponding interrupt handler.
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Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard 
defines a boundary-scan architecture used for in-circuit testing of integrated circuit 
devices. It is commonly known by the initials JTAG.

JTAG See Joint Test Action Group.

JTAG Access Port (JTAG-AP)
An optional component of the DAP that provides JTAG access to on-chip components, 
operating as a JTAG master port to drive JTAG chains throughout a SoC.

Little-endian Byte ordering scheme in which bytes of increasing significance in a data word are stored 
at increasing addresses in memory.

See also Big-endian and Endianness.

Little-endian memory
Memory in which:

• a byte or halfword at a word-aligned address is the least significant byte or 
halfword within the word at that address

• a byte at a halfword-aligned address is the least significant byte within the 
halfword at that address.

See also Big-endian memory.

Load/store architecture
A processor architecture where data-processing operations only operate on register 
contents, not directly on memory contents.

Load Store Unit (LSU)
The part of a processor that handles load and store transfers.

LSU See Load Store Unit.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system 
comprises several macrocells (such as a processor, an ETM, and a memory block) plus 
application-specific logic.

Microprocessor See Processor.

Monitor debug-mode
One of two mutually exclusive debug modes. In Monitor debug-mode the processor 
enables a software abort handler provided by the debug monitor or operating system 
debug task. When a breakpoint or watchpoint is encountered, this enables vital system 
interrupts to continue to be serviced while normal program execution is suspended. 

See also Halt mode.
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Multi-ICE A JTAG-based tool for debugging embedded systems.

Penalty The number of cycles in which no useful Execute stage pipeline activity can occur 
because an instruction flow is different from that assumed or predicted.

Power-on reset See Cold reset.

Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the 
pipeline before the preceding instructions have finished executing. Prefetching an 
instruction does not mean that the instruction has to be executed.

Prefetch Abort An indication from a memory system to a core that it must halt execution of an 
attempted illegal memory access. A Prefetch Abort can be caused by the external or 
internal memory system as a result of attempting to access invalid instruction memory. 

See also Data Abort, External Abort and Abort.

Processor A processor is the circuitry in a computer system required to process data using the 
computer instructions. It is an abbreviation of microprocessor. A clock source, power 
supplies, and main memory are also required to create a minimum complete working 
computer system. 

Read Reads are defined as memory operations that have the semantics of a load. That is, the 
ARM instructions LDM, LDRD, LDC, LDR, LDRT, LDRSH, LDRH, LDRSB, LDRB, 
LDRBT, LDREX, RFE, STREX, SWP, and SWPB, and the Thumb instructions LDM, 
LDR, LDRSH, LDRH, LDRSB, LDRB, and POP. Java instructions that are accelerated 
by hardware can cause a number of reads to occur, according to the state of the Java 
stack and the implementation of the Java hardware acceleration. 

Region A partition of instruction or data memory space.

Reserved A field in a control register or instruction format is reserved if the field is to be defined 
by the implementation, or produces Unpredictable results if the contents of the field are 
not zero. These fields are reserved for use in future extensions of the architecture or are 
implementation-specific. All reserved bits not used by the implementation must be 
written as 0 and read as 0.

Saved Program Status Register (SPSR)
The register that holds the CPSR of the task immediately before the exception occurred 
that caused the switch to the current mode.

SBO See Should Be One.

SBZ See Should Be Zero.

SBZP See Should Be Zero or Preserved.
ARM DDI 0311D Copyright © 2004, 2006 ARM Limited. All rights reserved. Glossary-9



Glossary 
Scalar operation A VFP coprocessor operation involving a single source register and a single destination 
register.

See also Vector operation.

Scan chain A scan chain is made up of serially-connected devices that implement boundary scan 
technology using a standard JTAG TAP interface. Each device contains at least one TAP 
controller containing shift registers that form the chain connected between TDI and 
TDO, through which test data is shifted. Processors can contain several shift registers 
to enable you to access selected parts of the device.

SCREG The currently selected scan chain number in an ARM TAP controller.

Should Be One (SBO)
Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 produces 
Unpredictable results.

Should Be Zero (SBZ)
Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces 
Unpredictable results.

Should Be Zero or Preserved (SBZP)
Should be written as 0 (or all 0s for bit fields) by software, or preserved by writing the 
same value back that has been previously read from the same field on the same 
processor.

Significand The component of a binary floating-point number that consists of an explicit or implicit 
leading bit to the left of the implied binary point and a fraction field to the right.

SPSR See Saved Program Status Register

TAP See  Test access port.

TCM See Tightly coupled memory.

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output 
and control interface to a JTAG boundary-scan architecture. The mandatory terminals 
are TDI, TDO, TMS, and TCK. The optional terminal is TRST. This signal is 
mandatory in ARM cores because it is used to reset the debug logic.

Thumb instruction A halfword that specifies an operation for an ARM processor in Thumb state to 
perform. Thumb instructions must be halfword-aligned.

Thumb state A processor that is executing Thumb (16-bit) halfword aligned instructions is operating 
in Thumb state.
Glossary-10 Copyright © 2004, 2006 ARM Limited. All rights reserved. ARM DDI 0311D



Glossary 
Tightly coupled memory (TCM)
An area of low latency memory that provides predictable instruction execution or data 
load timing in cases where deterministic performance is required. TCMs are suited to 
holding:

• critical routines (such as for interrupt handling)

• scratchpad data

• data types whose locality is not suited to caching

• critical data structures (such as interrupt stacks).

Trap An exceptional condition in a VFP coprocessor that has the respective exception enable 
bit set in the FPSCR register. The user trap handler is executed. 

Undefined Indicates an instruction that generates an Undefined instruction trap. See the ARM 
Architecture Reference Manual for more details on ARM exceptions.

UNP See Unpredictable.

Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have 
any value. For writes, writing to this location causes unpredictable behavior, or an 
unpredictable change in device configuration. Unpredictable instructions must not halt 
or hang the processor, or any part of the system.

Unsupported values
Specific data values that are not processed by the VFP coprocessor hardware but 
bounced to the support code for completion. These data can include infinities, NaNs, 
subnormal values, and zeros. An implementation is free to select which of these values 
is supported in hardware fully or partially, or requires assistance from support code to 
complete the operation. Any exception resulting from processing unsupported data is 
trapped to user code if the corresponding exception enable bit for the exception is set. 

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug 
controller and debug logic. This type of reset is useful if you are using the debugging 
features of a processor.

Watchpoint A watchpoint is a mechanism provided by debuggers to halt program execution when 
the data contained by a particular memory address is changed. Watchpoints are inserted 
by the programmer to enable inspection of register contents, memory locations, and 
variable values when memory is written to test that the program is operating correctly. 
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

Word A 32-bit data item.

Write Writes are defined as operations that have the semantics of a store. That is, the ARM 
instructions SRS, STM, STRD, STC, STRT, STRH, STRB, STRBT, STREX, SWP, and 
SWPB, and the Thumb instructions STM, STR, STRH, STRB, and PUSH. Java 
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instructions that are accelerated by hardware can cause a number of writes to occur, 
according to the state of the Java stack and the implementation of the Java hardware 
acceleration.

Write completion The memory system indicates to the processor that a write has been completed at a point 
in the transaction where the memory system is able to guarantee that the effect of the 
write is visible to all processors in the system. This is not the case if the write is 
associated with a memory synchronization primitive, or is to a Device or Strongly 
Ordered region. In these cases the memory system might only indicate completion of 
the write when the access has affected the state of the target, unless it is impossible to 
distinguish between having the effect of the write visible and having the state of target 
updated. 

This stricter requirement for some types of memory ensures that any side-effects of the 
memory access can be guaranteed by the processor to have taken place. You can use this 
to prevent the starting of a subsequent operation in the program order until the 
side-effects are visible.
Glossary-12 Copyright © 2004, 2006 ARM Limited. All rights reserved. ARM DDI 0311D


	ARM968E-S Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this manual
	Product revision status
	Intended audience
	Using this manual
	Conventions
	Further reading

	Feedback
	Feedback on the ARM968E-S processor
	Feedback on this manual


	Introduction
	1.1 About the ARM968E-S processor
	1.2 TCM access
	1.2.1 BIU AHB-Lite master interface
	1.2.2 DMA AHB-Lite slave interface

	1.3 Debug interface configurations
	1.3.1 Reduced debug interface
	1.3.2 Full debug interface


	Programmer’s Model
	2.1 About the programmer’s model
	2.2 Processor states
	2.2.1 Switching state
	2.2.2 Switching state during exception handling

	2.3 Processor operating modes
	2.4 Registers
	2.4.1 Accessing the register set in Thumb state
	2.4.2 Program Status Registers

	2.5 Data types
	2.6 Memory formats
	2.7 Exceptions
	2.7.1 Entering an exception
	2.7.2 Exiting an exception
	2.7.3 Exception vectors
	2.7.4 Exception priorities


	Memory Map
	3.1 About the ARM968E-S memory map
	3.2 Tightly-coupled memory address space
	3.3 Bufferable write address space

	System Control Coprocessor
	4.1 About the System Control Processor
	4.2 Accessing CP15 registers
	4.3 CP15 register summary
	4.4 CP15 register descriptions
	4.4.1 CP15 c0 Device ID Register 
	4.4.2 CP15 c0 TCM Size Register
	4.4.3 CP15 c1 Control Register
	4.4.4 CP15 c7 core control operations
	4.4.5 CP15 c13 Trace Process ID Register
	4.4.6 CP15 c15 Configuration Control Register

	4.5 CP15 instruction summary

	Bus Interface Unit
	5.1 About the BIU
	5.2 Bus transfer characteristics
	5.2.1 Transfer size
	5.2.2 Sequential and nonsequential transfers
	5.2.3 BIU protection control
	5.2.4 BIU locked transfers

	5.3 Instruction prefetch buffer
	5.3.1 Optimized Thumb instruction prefetch
	5.3.2 IPB disable bit
	5.3.3 AHB error response in IPB
	5.3.4 IPB timing examples

	5.4 AHB write buffer
	5.4.1 Committing write data to the AHB write buffer
	5.4.2 Draining write data from the AHB write buffer
	5.4.3 Enabling the AHB write buffer
	5.4.4 Disabling the AHB write buffer

	5.5 AHB bus master interface
	5.5.1 Overview of AHB

	5.6 AHB transfer descriptions
	5.6.1 Back-to-back data transfers
	5.6.2 Data burst support

	5.7 AHB clocking
	5.8 CLK-to-HCLK skew
	5.8.1 Clock tree insertion at top level
	5.8.2 Hierarchical clock tree insertion


	Tightly-Coupled Memory Interface
	6.1 About the TCM interface
	6.2 Enabling TCM
	6.2.1 Using INITRAM input pin
	6.2.2 Using CP15 c1 Control Register

	6.3 TCM write buffers
	6.3.1 Forcing strict read/write ordering

	6.4 TCM size
	6.5 TCM error detection signals
	6.6 Interface timing
	6.6.1 TCM reads with zero wait states
	6.6.2 TCM reads with one wait state
	6.6.3 TCM reads with four wait states
	6.6.4 TCM writes with zero wait states
	6.6.5 TCM write with one wait state
	6.6.6 TCM write with two wait states
	6.6.7 TCM accesses with varying TCM wait states
	6.6.8 Speculative TCM read access

	6.7 TCM implementation examples
	6.7.1 Simplest zero-wait-state RAM example
	6.7.2 Byte-banks of RAM examples
	6.7.3 Multiple banks of RAM example
	6.7.4 Sequential RAM example
	6.7.5 Single or multiple wait-state RAM example


	DMA Interface
	7.1 About the DMA interface
	7.2 Bus transfer characteristics
	7.2.1 Transfer size
	7.2.2 Sequential and nonsequential transfers
	7.2.3 Burst types 
	7.2.4 Protection control
	7.2.5 Error response limitations

	7.3 AHB bus slave interface
	7.4 Wait-for-interrupt mode
	7.5 AHB transfer descriptions
	7.5.1 DMA reads
	7.5.2 DMA read with error response 
	7.5.3 DMA read with wait state
	7.5.4 DMA write with wait state 
	7.5.5 Interleaved DMA writes to DTCM


	Debug Support
	8.1 About the debug interface
	8.1.1 Entering debug state
	8.1.2 Clocks

	8.2 Debug systems
	8.2.1 Debug host
	8.2.2 Protocol converter
	8.2.3 ARM968E-S debug target

	8.3 Debug data chain 15
	8.4 Debug interface signals
	8.4.1 Entry into debug state on breakpoint
	8.4.2 Breakpoints and exceptions
	8.4.3 Watchpoints
	8.4.4 Watchpoints and exceptions
	8.4.5 Debug request
	8.4.6 Actions of the ARM9E-S core in debug state

	8.5 ARM9E-S core clock domains
	8.6 Determining the core and system state
	8.7 About the EmbeddedICE-RT
	8.8 Disabling EmbeddedICE-RT
	8.9 The debug comms channel
	8.9.1 Debug comms channel registers
	8.9.2 Communications using the debug comms channel

	8.10 Monitor debug-mode
	8.11 Additional debug reading

	Embedded Trace Macrocell Interface
	9.1 About the ETM interface
	9.2 Enabling the ETM interface
	9.3 Trace support features
	9.3.1 FIFOFULL
	9.3.2 Configuration Control Register
	9.3.3 Trace Process ID Register


	Test Support
	10.1 About the ARM968E-S test methodology
	10.2 Scan insertion and ATPG
	10.2.1 ARM968E-S test wrapper


	DFT Interface
	11.1 About the DFT interface

	Signal Descriptions
	A.1 Signal properties and requirements
	A.2 AHB interface signals
	A.3 DMA interface signals
	A.4 Debug signals
	A.5 TCM interface signals
	A.5.1 DTCM0 and DTCM1 interface signals
	A.5.2 ITCM interface signals

	A.6 ETM interface signals
	A.7 DFT interface signals
	A.8 Miscellaneous interface signals

	AC Parameters
	B.1 About AC timing parameters
	B.2 CLK, HCLKEN, and HRESETn timing parameters
	B.3 AHB bus master timing parameters
	B.4 DMA interface timing parameters
	B.5 Debug interface timing parameters
	B.6 JTAG interface timing parameters
	B.7 Configuration and exception timing parameters
	B.8 INTEST wrapper timing parameters
	B.9 ETM interface timing parameters
	B.10 TCM interface timing parameters

	Glossary

