

Is Now Part of



# **ON Semiconductor**®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the



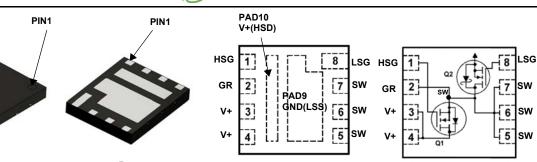
# FDPC5030SG PowerTrench<sup>®</sup> Power Clip 30V Asymmetric Dual N-Channel MOSFET

## Features

Q1: N-Channel

- Max r<sub>DS(on)</sub> = 5.0 mΩ at V<sub>GS</sub> = 10 V, I<sub>D</sub> = 17 A
- Max r<sub>DS(on)</sub> = 6.5 mΩ at V<sub>GS</sub> = 4.5 V, I<sub>D</sub> = 14 A

Q2: N-Channel


- Max r<sub>DS(on)</sub> = 2.4 mΩ at V<sub>GS</sub> = 10 V, I<sub>D</sub> = 25 A
- Max  $r_{DS(on)}$  = 3.0 m $\Omega$  at V<sub>GS</sub> = 4.5 V, I<sub>D</sub> = 22 A
- Low Inductance Packaging Shortens Rise/Fall Times, Resulting in Lower Switching Losses
- MOSFET Integration Enables Optimum Layout for Lower Circuit Inductance and Reduced Switch Node Ringing
- RoHS Compliant

# **General Description**

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFET<sup>TM</sup> (Q2) have been designed to provide optimal power efficiency.

### Applications

- Computing
- Communications
- General Purpose Point of Load



Top Power Clip 5X6 Bottom

| Pin | Name | Description    | Pin    | Name    | Description                    | Pin | Name     | Description     |
|-----|------|----------------|--------|---------|--------------------------------|-----|----------|-----------------|
| 1   | HSG  | High Side Gate | 3,4,10 | V+(HSD) | High Side Drain                | 8   | LSG      | Low Side Gate   |
| 2   | GR   | Gate Return    | 5,6,7  | SW      | Switching Node, Low Side Drain | 9   | GND(LSS) | Low Side Source |

MOSFET Maximum Ratings T<sub>A</sub> = 25 °C unless otherwise noted.

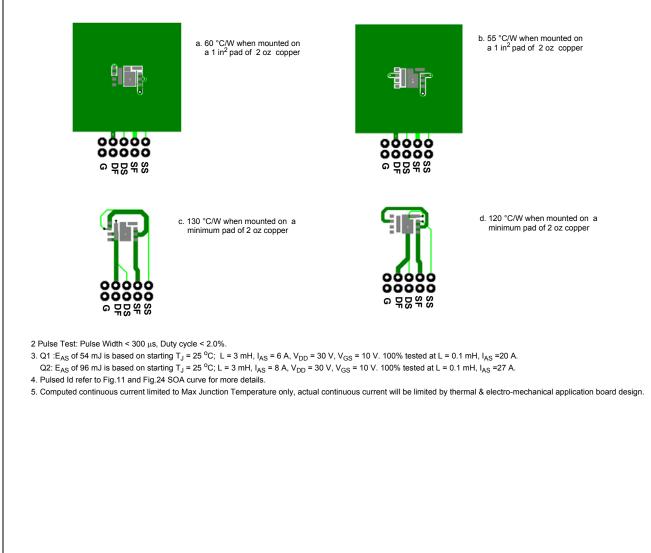
| Symbol                            | Parameter                                        |                                  |                       | Q2                         | Units |  |
|-----------------------------------|--------------------------------------------------|----------------------------------|-----------------------|----------------------------|-------|--|
| V <sub>DS</sub>                   | Drain to Source Voltage                          |                                  | 30                    | 30                         | V     |  |
| V <sub>GS</sub>                   | Gate to Source Voltage                           |                                  | ±20                   | ±12                        | V     |  |
|                                   | Drain Current -Continuous                        | T <sub>C</sub> = 25 °C (Note 5)  | 56                    | 84                         |       |  |
|                                   | -Continuous                                      | T <sub>C</sub> = 100 °C (Note 5) | 35                    | 53<br>25 <sup>Note1b</sup> | A     |  |
| ID                                | -Continuous                                      | T <sub>A</sub> = 25 °C           | 17 <sup>Note1a</sup>  |                            |       |  |
|                                   | -Pulsed                                          | T <sub>A</sub> = 25 °C (Note 4)  | 227                   | 503                        | 1     |  |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy                    | (Note 3)                         | 54                    | 96                         | mJ    |  |
|                                   | Power Dissipation for Single Operation           | T <sub>C</sub> = 25 °C           | 23 25                 |                            |       |  |
| P <sub>D</sub>                    | Power Dissipation for Single Operation           | T <sub>A</sub> = 25 °C           | 2.1 <sup>Note1a</sup> | 2.3 <sup>Note1b</sup>      | W     |  |
|                                   | Power Dissipation for Single Operation           | T <sub>A</sub> = 25 °C           | 1.0 <sup>Note1c</sup> | 1.1 <sup>Note1d</sup>      | 1     |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temperature Range |                                  | -55 to                | +150                       | °C    |  |

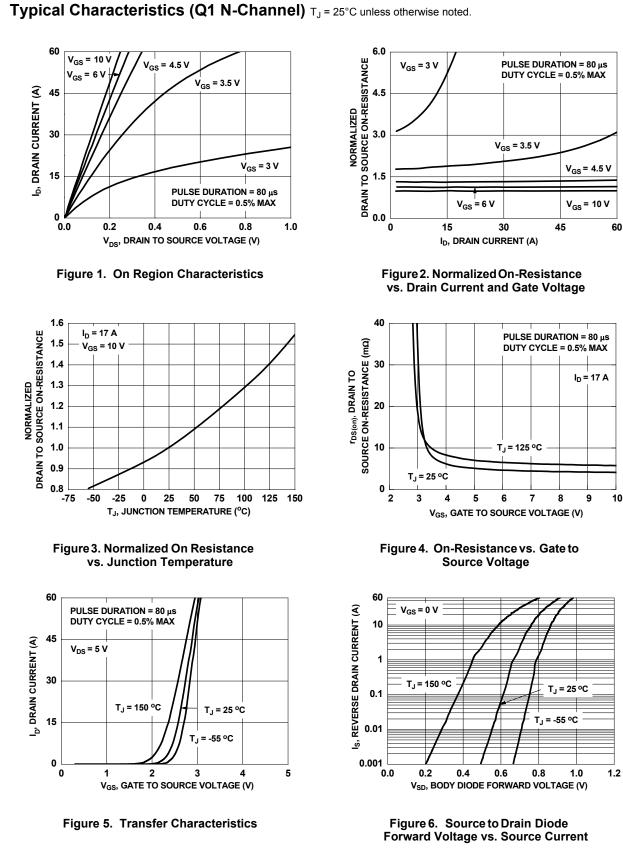
### **Thermal Characteristics**

| $R_{	ext{	heta}JC}$ | Thermal Resistance, Junction to Case    | 5.6                   | 4.9                   |      |
|---------------------|-----------------------------------------|-----------------------|-----------------------|------|
| $R_{\thetaJA}$      | Thermal Resistance, Junction to Ambient | 60 <sup>Note1a</sup>  | 55 <sup>Note1b</sup>  | °C/W |
| $R_{	ext{	heta}JA}$ | Thermal Resistance, Junction to Ambient | 130 <sup>Note1c</sup> | 120 <sup>Note1d</sup> |      |

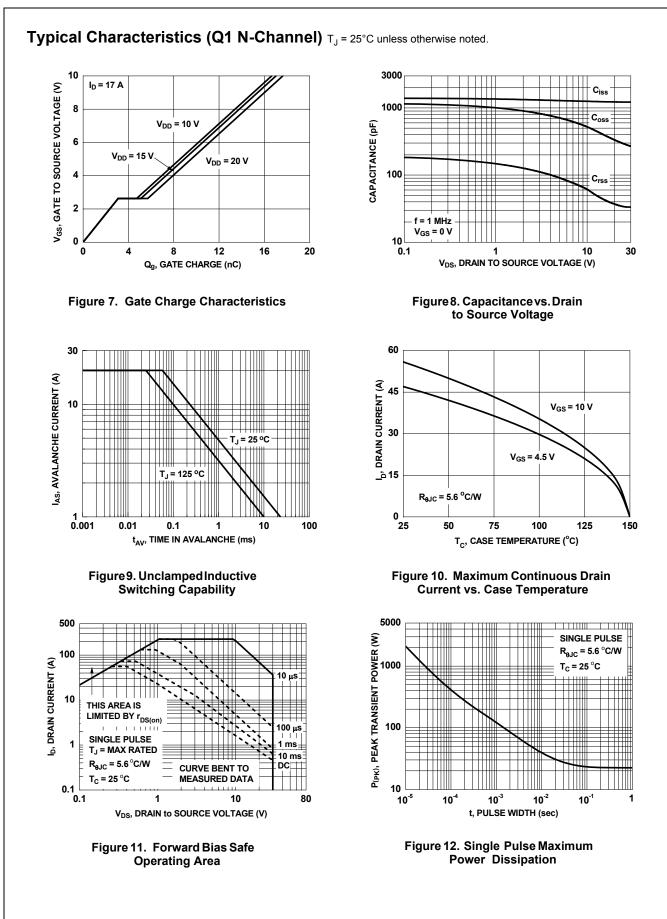
©2015 Fairchild Semiconductor Corporation

| Device Marking                            |                          | Device                            | Package Reel Size                                                                                       |                                              | Tape Width |            |                   | Quantity          |            |  |
|-------------------------------------------|--------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------|------------|------------|-------------------|-------------------|------------|--|
| FDPC5030SG FDPC5030SG                     |                          | FDPC5030SG                        | Power Clip 56 13 "                                                                                      |                                              |            | 12 mm      |                   |                   | 3000 units |  |
| Electric                                  | al Chara                 | cteristics T <sub>J</sub> = 25 °C | unless otherwise note                                                                                   | ed.                                          |            |            |                   |                   |            |  |
| Symbol                                    |                          | Parameter                         | Test Cond                                                                                               | ditions                                      | Туре       | Min        | Тур               | Max               | Units      |  |
| Off Chara                                 | cteristics               |                                   |                                                                                                         |                                              |            |            |                   |                   |            |  |
| BV <sub>DSS</sub>                         | Drain to Sc              | ource Breakdown Voltage           | I <sub>D</sub> = 250 μA, V <sub>GS</sub> =<br>I <sub>D</sub> = 1 mA, V <sub>GS</sub> = 0                |                                              | Q1<br>Q2   | 30<br>30   |                   |                   | V          |  |
| ΔBV <sub>DSS</sub><br>ΔTJ                 | Breakdown<br>Coefficient | Voltage Temperature               | $I_D = 250 \ \mu A$ , refere<br>$I_D = 10 \ mA$ , referer                                               |                                              | Q1<br>Q2   |            | 15<br>16          |                   | mV/°C      |  |
| I <sub>DSS</sub>                          | Zero Gate                | Voltage Drain Current             | $V_{DS} = 24 V, V_{GS} = 0 V$<br>$V_{DS} = 24 V, V_{GS} = 0 V$                                          |                                              | Q1<br>Q2   |            |                   | 1<br>500          | μΑ<br>μΑ   |  |
| I <sub>GSS</sub>                          | Gate to So<br>Forward    | urce Leakage Current,             | $V_{GS} = 20 V, V_{DS} = 0$<br>$V_{GS} = 12 V, V_{DS} = 0$                                              | ) V                                          | Q1<br>Q2   |            |                   | 100<br>100        | nA<br>nA   |  |
| On Chara                                  | cteristics               |                                   |                                                                                                         |                                              |            |            | II                |                   | 1          |  |
| V <sub>GS(th)</sub>                       |                          | urce Threshold Voltage            | $V_{GS} = V_{DS}, I_D = 250 \ \mu A$<br>$V_{GS} = V_{DS}, I_D = 1 \ m A$                                |                                              | Q1<br>Q2   | 1.0<br>1.0 | 1.7<br>1.6        | 3.0<br>3.0        | V          |  |
| $\frac{\Delta V_{GS(th)}}{\Delta T_{.1}}$ |                          | urce Threshold Voltage            | $I_D = 250 \ \mu\text{A}, \text{ refere}$<br>$I_D = 10 \ \text{mA}, \text{ refere}$                     | nced to 25 °C                                | Q1<br>Q2   | -          | -5<br>-3          |                   | mV/°C      |  |
|                                           |                          |                                   | $V_{GS} = 10V, I_D = 17$<br>$V_{GS} = 4.5 V, I_D = 17$<br>$V_{GS} = 10 V, I_D = 17$                     | A<br>4 A                                     | Q1         |            | 4.1<br>5.4<br>5.7 | 5.0<br>6.5<br>7.0 |            |  |
| r <sub>DS(on)</sub>                       | Drain to Sc              | ource On Resistance               | $V_{GS} = 10V, I_D = 25 A$<br>$V_{GS} = 4.5 V, I_D = 22 A$<br>$V_{GS} = 10 V, I_D = 25 A, T_J = 125 °C$ |                                              | Q2         |            | 1.9<br>2.4<br>2.7 | 2.4<br>3.0<br>3.4 | mΩ         |  |
| 9 <sub>FS</sub>                           | Forward Tr               | ansconductance                    | $V_{DS} = 5 V, I_D = 17 A$<br>$V_{DS} = 5 V, I_D = 25 A$                                                |                                              | Q1<br>Q2   |            | 93<br>139         |                   | S          |  |
| Dynamic                                   | Character                | istics                            | 55 5                                                                                                    |                                              |            |            |                   |                   |            |  |
| C <sub>iss</sub>                          | Input Capa               |                                   | Q1:<br>V <sub>DS</sub> = 15 V, V <sub>GS</sub> = 0 V, f = 1 MHZ                                         |                                              | Q1<br>Q2   |            | 1224<br>2730      | 1715<br>3825      | pF         |  |
| C <sub>oss</sub>                          | Output Cap               | pacitance                         |                                                                                                         |                                              | Q1<br>Q2   |            | 397<br>801        | 560<br>1125       | pF         |  |
| C <sub>rss</sub>                          | Reverse Tr               | ansfer Capacitance                | Q2:<br>V <sub>DS</sub> = 15 V, V <sub>GS</sub> = 0 V, f = 1 MHZ                                         |                                              | Q1<br>Q2   |            | 42<br>72          | 60<br>100         | pF         |  |
| R <sub>g</sub>                            | Gate Resis               | tance                             |                                                                                                         |                                              | Q1<br>Q2   | 0.1<br>0.1 | 0.5<br>1.1        | 1.5<br>2.2        | Ω          |  |
| Switching                                 | g Characte               | eristics                          |                                                                                                         |                                              |            |            |                   |                   |            |  |
| t <sub>d(on)</sub>                        | Turn-On De               | elay Time                         |                                                                                                         |                                              | Q1<br>Q2   |            | 8<br>10           | 16<br>19          | ns         |  |
| t <sub>r</sub>                            | Rise Time                |                                   | Q1:<br>V <sub>DD</sub> = 15 V, I <sub>D</sub> = 17                                                      | ' Α, R <sub>GEN</sub> = 6 Ω                  | Q1<br>Q2   |            | 2<br>4            | 10<br>10          | ns         |  |
| t <sub>d(off)</sub>                       | Turn-Off De              | elay Time                         | Q2:<br>V <sub>DD</sub> = 15 V, I <sub>D</sub> = 25                                                      | A Rock = 60                                  | Q1<br>Q2   |            | 18<br>30          | 33<br>48          | ns         |  |
| t <sub>f</sub>                            | Fall Time                |                                   | • UU - 10 •, I <u>D</u> - 20                                                                            | GEN - 0.32                                   | Q1<br>Q2   |            | 2<br>3            | 10<br>10          | ns         |  |
| Qg                                        | Total Gate               | Charge                            | $V_{GS}$ = 0 V to 10 V                                                                                  | Q1                                           | Q1<br>Q2   |            | 17<br>39          | 24<br>55          | nC         |  |
| Qg                                        | Total Gate               | Charge                            | $V_{GS}$ = 0 V to 4.5 V                                                                                 |                                              | Q1<br>Q2   |            | 8<br>18           | 11<br>26          | nC         |  |
| Q <sub>gs</sub>                           | Gate to So               | urce Gate Charge                  |                                                                                                         | Q2<br>V <sub>DD</sub> = 15 V, I <sub>D</sub> | Q1<br>Q2   |            | 3.1<br>6.1        |                   | nC         |  |
| Q <sub>gd</sub>                           | Gate to Dra              | ain "Miller" Charge               |                                                                                                         | = 25 A                                       | Q1<br>Q2   |            | 2.0<br>4.3        |                   | nC         |  |

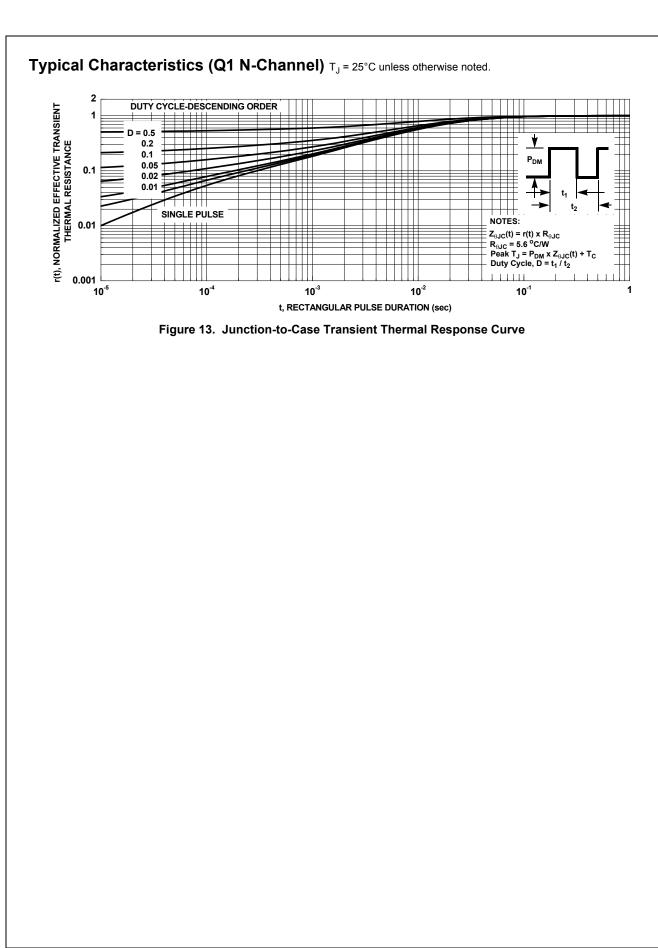

Package Marking and Ordering Information

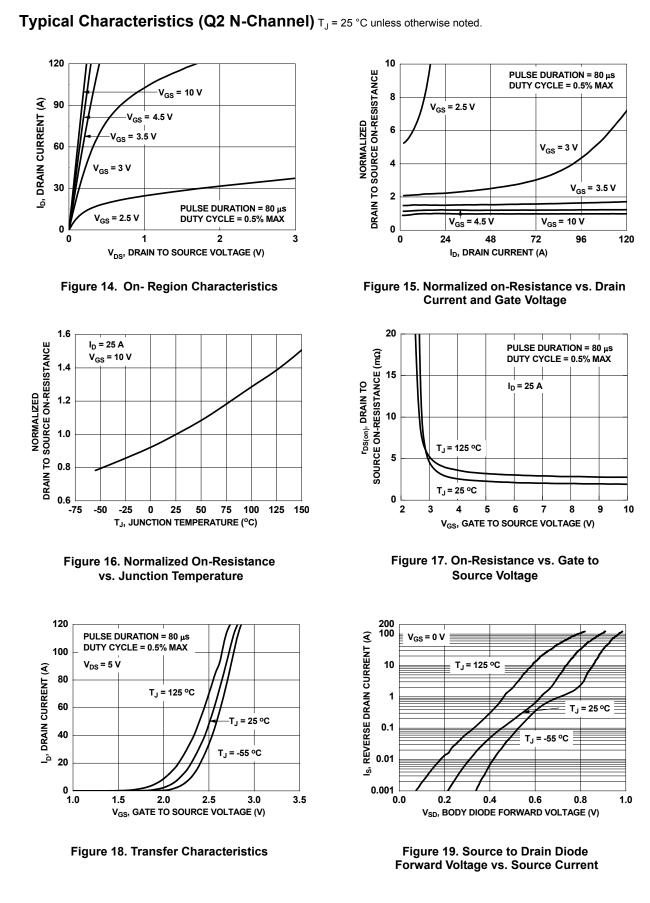

| FDF               |
|-------------------|
| °C50              |
| 30S               |
| G Po              |
| wer               |
| Tren              |
| ch <sup>®</sup> I |
| Power             |
| Clip              |

| Symbol          | Parameter Test Conditions             |                                                                          | Туре     | Min | Тур        | Мах        | Units |
|-----------------|---------------------------------------|--------------------------------------------------------------------------|----------|-----|------------|------------|-------|
| Drain-Sou       | urce Diode Characteristics            |                                                                          |          |     |            |            |       |
| V <sub>SD</sub> | Source to Drain Diode Forward Voltage | $V_{GS} = 0 V, I_S = 17 A$ (Note 2<br>$V_{GS} = 0 V, I_S = 25 A$ (Note 2 |          |     | 0.8<br>0.8 | 1.2<br>1.2 | V     |
| t <sub>rr</sub> | Reverse Recovery Time                 | Q1<br>I <sub>F</sub> = 17 A, di/dt = 100 A/µs                            | Q1<br>Q2 |     | 23<br>27   | 37<br>44   | ns    |
| Q <sub>rr</sub> | Reverse Recovery Charge               | Q2<br>I <sub>F</sub> = 25 A, di/dt = 230 A/µs                            | Q1<br>Q2 |     | 8<br>31    | 16<br>50   | nC    |

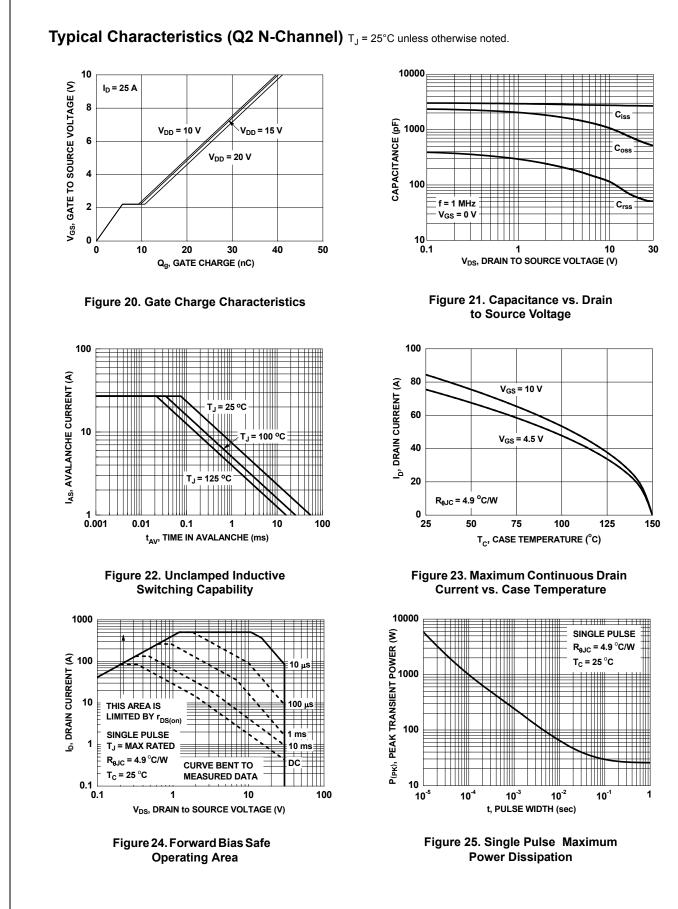

Notes:

 $1.R_{\theta,LA}$  is determined with the device mounted on a 1 in<sup>2</sup> pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material,  $R_{\theta,CA}$  is determined by the user's board design.




FDPC5030SG PowerTrench<sup>®</sup> Power Clip











FDPC5030SG PowerTrench<sup>®</sup> Power Clip



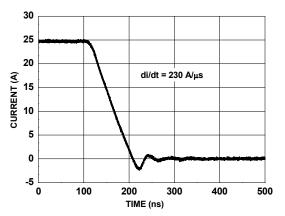
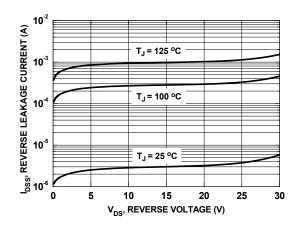


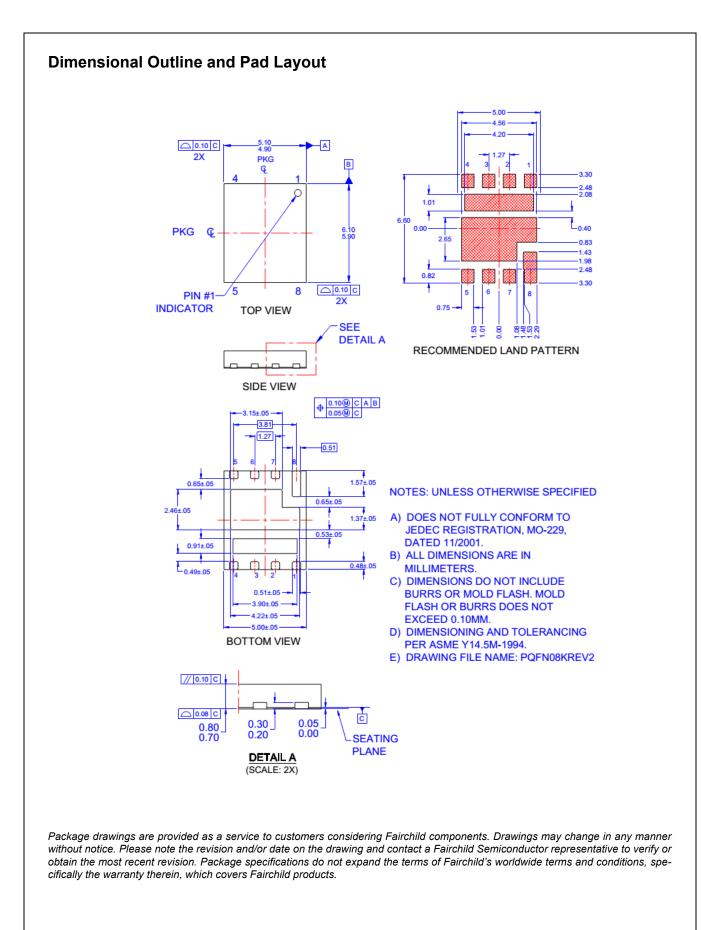


# Typical Characteristics (continued)

# SyncFET<sup>™</sup> Schottky Body Diode Characteristics

Fairchild's SyncFET<sup>TM</sup> process embeds a Schottky diode in parallel with PowerTrench<sup>®</sup> MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDPC5030SG.



Figure 27. FDPC5030SG SyncFET<sup>™</sup> Body Diode Reverse Recovery Characteristic

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.



# Figure 28. SyncFET<sup>™</sup> Body Diode Reverse Leakage vs. Drain-Source Voltage

FDPC5030SG PowerTrench<sup>®</sup> Power Clip





#### TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

| AttitudeEngine™ FRFET® Uote   Awinda® Global Power Resource <sup>SM</sup> Uote   AX-CAP®* GreenBridge™ Power1   BitSiC™ Green FPS™ Power2   Build it Now™ Green FPS™ Power3   CorePLUS™ Gmax™ Program   CorePOWER™ GTO™ QFET®   CROSSVOLT™ IntelliMAX™ QS™   Current Transfer Logic™ Marking Small Speakers Sound Louder RapidC   Dual Cool™ MegaBuck™ OT OT   EfficentMax™ MicroPak™ Saving EfficentMax™   EfficentMax™ MicroPak™ Solution Saving   Fairchild® MotionMax™ Solution Solution   Fairchild® MotionGrid® STEAL SuperF   FACT® MTI® SuperS SuperS | mmable Active Droop ™ ImyLogiC*   imyLogiC* TinyPower™   imyPower™ Transic™   our world, 1mW/W/kW at a time™ TRUECURRENT®*   wise™ Wise™   fstart™ UHC®   infET™ UHC®   Ultra FRFET™   infet™ VCX™   infet™ VisualMax™   infet™ VoltagePlus™   infet™ Xs™   infet™ Xsens™   infet™ Mitt ™ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### **PRODUCT STATUS DEFINITIONS**

### Definition of Terms

| Datasheet Identification | Product Status        | Definition                                                                                                                                                                                          |  |  |  |  |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Advance Information      | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |  |  |  |  |
| Preliminary              | First Production      | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |  |  |  |  |
| No Identification Needed | Full Production       | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |  |  |  |  |
| Obsolete                 | Not In Production     | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |  |  |  |  |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: